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Abstract— Accurate trajectory prediction of surrounding road
users is critical to autonomous driving systems. In mixed traffic
flows, road users with different kinds of behaviors and styles
bring complexity to the environment, which requires considering
interactions among road users when anticipating their future tra-
jectories. This paper presents a long-term interactive trajectory
prediction method for surrounding vehicles using a hierarchical
multi-sequence learning network. In contrast to non-interactive
method which assumes that road users are independent of
each other, this method can automatically learn high-level
dependencies among multiple interacting vehicles through the
proposed structural-LSTM (long short-term memory) network.
Specifically, structural-LSTM first assigns one LSTM for each
interacting vehicle. Then these LSTMs share their cell states
and hidden states with their spatial-neighboring LSTMs by a
radial connection, and recurrently analyze the output state of
itself as well as the other LSTMs in a deeper layer. Finally
based on all output states, the network predicts trajectories for
surrounding vehicles. The proposed method is evaluated on the
NGSIM dataset, and its results show that satisfyingly accurate
prediction performance of long-term trajectories of surrounding
vehicles is accessible, e.g., longitudinal and lateral RMS error can
be reduced to less than 1.93m and 0.31m over Ss time horizon,
respectively.

Index Terms— Autonomous driving, trajectory prediction,
interaction, surrounding road user, LSTM.

I. INTRODUCTION

UOTONOMOUS vehicles (AVs) are believed to have

the great potential to improve road safety, reduce traffic
congestion and relieve drivers from driving burden. To guar-
antee driving safety in complex traffic environment, an AV
should be able to anticipate the traffic environment in the
future and respond to these changes appropriately. However,
the motion of road users surrounding the AV is often difficult
to predict since it is affected by various factors such as
the randomness of driver/bicyclist/pedestrian behaviors, strong
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interactions with other road users, and spatial constraints of
road geometry. In addition, the observation for road users
by on-board environment sensors is usually imperfect and
highly noisy due to the environment complexity and sensor
uncertainty. Therefore, it is challenging to implement accu-
rate online trajectory prediction of road users in complex
traffic environment, so as to facilitate the decision making
and path planning system for higher level of autonomous
driving [1], [2].

Among all kinds of road users, surrounding vehicles (SVs)
are the most common and fundamental targets of trajectory
prediction in many scenarios, especially in highway. Classic
works use vehicle kinematic or dynamic models along with
filtering technologies, e.g., Kalman filters, for trajectory
prediction [3], [4]. They are computationally efficient and
generally effective for short-term prediction (i.e., Is to 2s
in the future), but quickly lose accuracy over a longer time
horizon. In order to extend prediction horizon with enough
prediction accuracy, researchers make effort on studying
driver intention and maneuver [5], [6], and then use prototype
trajectories to make predictions based on the recognized
driving patterns [7]. The predictions are quite satisfying but
constrained by the limited number of prototypes. For more
temporal adaptability and trajectory flexibility, Xin et al
implements recurrent neural networks (RNNs), which can
learn both spatial and temporal structure of long trajectories.
Such method outperforms the other methods in long-term
prediction (i.e., 3s to 5s in the future) [8].

So far, most of pioneering RNN-based works have assumed
that the future trajectories of SVs are independent of each
other. As Fig. 1(a) illustrated, this kind of method generally
observes the historic trajectory of a single SV by the first
LSTM (called “encoder”) and then passes what it understands
to the second LSTM (called “decoder”) to predict the future
trajectory of this SV. Even though [11] and [12] extract
features of multiple SVs and feed all of them to the encoder
LSTM, no interactions among the SVs but only a single
trajectory of the target SV is analyzed and predicted in the
decoder LSTM (see Fig. 1 (b)). In this paper, we aim at
predicting long-term trajectories of multiple SVs by designing
a two-layer structural-LSTM network and learning interac-
tions among SVs in both the encoder and the decoder as
Fig. 1 (c) shown.

LSTMs are able to recognize and predict long sequences,
but one single LSTM cannot capture dependencies between
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Fig. 1. Different mechanisms of trajectory prediction using LSTMs.

multiple correlated sequences. In our work, we employ and
connect multiple two-layer LSTMs corresponding to spatial-
nearby trajectories. In particular, during every state updating
step, we assign one LSTM to each SV as well as its neigh-
boring vehicles to extract spatial-temporal features of each
historic trajectory, and then connect these neighboring LSTMs,
share their hidden states with each other, and analyze their
interactions in the deeper LSTM layer, based on which we
predict future trajectories. This hierarchical network, which
is inspired by structural-RNN [13], is referred to as the
structural-LSTM. The proposed method replaces the standard
LSTM as structural-LSTM for both the encoder and the
decoder. Inputs for the encoder are sequentially transformed
coordinates of SVs in the past 10 seconds, while the outputs of
the decoder are future locations of SVs in the next 5 seconds.

The contribution of this paper is proposing radial con-
nection structures for state sharing among multiple LSTMs
and designing a new trajectory representation method for the
two-layer encoder-decoder architecture to learn interactions
among vehicles and improve long-term trajectory prediction
with this guidance.
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The rest of this paper is organized as follows. In Section II,
related works about trajectory prediction are summarized.
In section III, the problem is formally defined, and the
proposed method with its related techniques are introduced.
In Section IV, the method application is described and the
results are discussed. The paper is concluded in Section V.

II. RELATED WORKS

An extensive survey on vehicle motion prediction models
has been presented by Leféevre et al. [14], where the mod-
els are categorized into physics-based, maneuver-based and
interaction-aware models. Since then, many RNN-based meth-
ods have been proposed for maneuver recognition, trajectory
prediction and interaction modeling. In this section, we give a
review on these works to clarify the different mechanisms of
trajectory prediction, especially LSTM-based methods.

A. Non-Interactive Predictions

Implemented with object tracking techniques, vehicle
motion models such as kinematic models or dynamic models
have been used for trajectory prediction [3], [4]. Since the
observation is often limited, Kalman filter has been widely
used for prediction by taking the uncertainty in vehicle model
into consideration [3]. In order to account for more influential
factors and improve the prediction accuracy further, Bayesian
filtering techniques such as the context-dependent interactive
multiple model filter [15] and Monte-Carlo method [4] have
been proposed. These methods, while taking into account the
physical limitations of a vehicle, are normally effective for
short-term trajectory prediction, i.e. one or two seconds in the
future, and are not accurate enough for long-term prediction,
which will directly affect the performance of decision making
and path planning.

One popular alternative to the challenges mentioned above
is to take advantage of the prototype trajectory so that
prediction can be performed by comparing the current tra-
jectory with the learned motion patterns and using the pro-
totype trajectory as a base model for future motion [14].
These prototype vehicle trajectories can be learned through
Gaussian process [16], [17] and Gaussian mixture model [18],
or multi-kernel-based shrinkage method [19]. The downside of
Gaussian model is the expensive online computation load of
calculating the probability similarity of the current trajectory
with the prototype one. Besides, it is time-dependent, i.e. tra-
jectories falling into the waiting intervals when a vehicle stops
have to be manually dropped out [20], [21]. When motion
patterns are represented by a finite set of prototype trajectories,
the similarity of a partial trajectory to a motion pattern is
measured by metrics such as the modified Hausdorff [22].
One disadvantage of such method is that using a finite set
of trajectories would take a very large number of prototypes
to model various patterns of the real-world driving trajectories.
Another difficulty is the adaption to different road geometry,
as the learned prototype trajectory models can only be applied
in a similar road layout.

One alternative to trajectory prototypes is to first estimate
the maneuver intention of the driver (e.g. waiting at the stop
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line, following another vehicle, executing a left turn) and then
to predict the successive physical states so that they corre-
spond to a possible execution of the identified maneuver [14].
A major advantage over trajectory prototypes is that there is no
need to match the partial trajectory with a previously observed
trajectory. Instead, higher-level characteristics are extracted
and used to recognize maneuvers, which makes it easier to
generalize the learned model to arbitrary layouts. For identi-
fying maneuvers in complex scenarios, discriminative learning
algorithms are very effective, such as Multi-Layer Percep-
trons [23], LSTM [24], Logistic regression [25], Relevance
Vector Machines [26], Support Vector Machines [27], [28],
Hidden Markov Model [29], [32], or tube-and-droplet-based
method [30], [31]. Given the driver’s maneuvers, trajectories
are predicted to match the identified maneuvers in a determin-
istic manner [33] or a probabilistic manner such as Gaussian
Process [16] or Rapidly-exploring Random Tree [27].

Besides these methods, an alternative end-to-end method,
the LSTM-based encoder-decoder architecture has been more
and more popular. It is first proposed for machine translation
task and has an ability to read and generate a sequence of
arbitrary length, i.e., sequence-to-sequence [34]. Many recent
researches used a LSTM as an encoder to understand driver’s
intention from the historic trajectory and then used another
LSTM as a decoder to generate the future trajectory as Fig. 1
(a) shown [8]-[10]. However, in practice, the assumption that
vehicles are moving independently of each other does not
hold. Vehicles share the road with other vehicles, and the
maneuvers performed by one vehicle will strongly influence
the maneuvers of the other vehicles, especially at road inter-
sections where priority rules force vehicles to take into account
the other vehicles. Disregarding these dependencies can lead
to erroneous interpretations of the situations, and deteriorates
the evaluation of the risk.

B. Interactive Prediction

Interaction-guided motion models represent vehicles as
maneuvering entities which interact with each other, i.e. the
motion of a vehicle is assumed to be influenced by the motion
of the other vehicles in the scene. Taking into account the
dependencies between the vehicles leads to a better inter-
pretation of their motion compared to the Intention-guided
motion models described in the previous section. As a result,
it contributes to a better understanding of the situation and
a more reliable evaluation of the risk. Despite this, there
are few interaction-guided motion models in the literature.
They use Dynamic Bayesian Networks [35], Kalman Neural
Networks [36], or LSTM [7], [11], [12], [37]. Nevertheless,
such models are usually computationally expensive for the
model training and may be not compatible with real-time
predicting as the number of interacting objects in the model
increases. More problematically, such models understand only
the interactions among the historic trajectories of different
SVs but consider no interaction when predicting the future
trajectories. For example, as shown in Fig. 1 (b), the single-
LSTM method inputs the trajectories of multiple SVs but only
outputs the trajectory of a single SV. From another perspective,

Decoder
(5-step 2-layer,

Encoder
(10-step 2-layer)

ﬂé& 1. .. IS é_éﬁégt&g» -'fii&'é
Al ERLAN AR

| Trajectory - v
| Representation Ady ((\; -.:.\ - \‘
| (10-feature 6-vehicle) Ad, | § ’) /

Fig. 2. The overall pipeline of the proposed trajectory predicting method.

such interaction-guided methods model only the influence of
the other SVs on the target SV in the encoder whereas ignore
the influence of the target SV on the other SVs in the decoder,
i.e., the interactions are unidirectional. For a higher reason-
ability, we proposed the structural-LSTM method to model
bidirectional interactions and predict trajectories of multiple
SVs as Fig. 1 (c) shown. This idea is consistent with [37] but
we use an end-to-end architecture without intention pattern
layers.

III. PROPOSED METHOD
A. Problem Definition

We select a group of totally six SVs located in three
adjacent lanes for each sample in the problem as Fig. 2 shown:
(a) target SV, whose trajectory is to be predicted for accuracy
evaluation; (b) front SV, which is in front of the target SV
and in the same lane; (c) left front SV, which is closest to
the target SV in longitudinal distance in front and in the left
adjacent lane; (d) left rear SV, which is closest to the target
SV in longitudinal distance in rear and in the left adjacent
lane; (e) right front SV, which is closest to the target SV
in longitudinal distance in front and in the right adjacent
lane; (f) right rear SV, which is closest to the target SV in
longitudinal distance in rear and in the right adjacent lane.
This is similar as the work in [7], [12] except that we delete
the rear SV which is behind the target SV. Note that whenever
the center of the target SV crosses the lane marking, the IDs
of the other SVs change correspondingly. Different from the
work in [9], [10] where vehicle trajectories were represented
in the form of occupancy grid and the prediction task turned
into a classification problem, we consider it as a regression
one whose outputs are supposed to be as accurate as actual
values.

More formally, our goal is to train a predictor for future
trajectory of sequential outputs ¥ = {ytk|t € Tpred, yk e F)

based on a set of observable feature inputs X = {xtk|t €
Tpast,xk € F}, where Tpase = {—Tpast,-..,—1,0 and
Tored = {1,2, ..., Tpreq are respectively the time intervals of
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the historical input and future predictions, F is the feature
set acquired and calculated simultaneously. For x¥ € F and
t € Tpred, we denote xtk by the value of feature x* observed
t time steps earlier. Similarly, we denote y,k by the value of
output y* generated ¢ time steps in the future.

B. Structural-LSTM Model

1) LSTM Cell: RNNs are distinguished from traditional
feed-forward networks by its internal states and cycles, which
are capable of analyzing sequential information and learning
temporal features. LSTM, a particular RNN, was developed to
avoid vanishing gradients of the loss function over time.

The LSTM has a memory state called “cell” which stores the
interpretation of past input data. The cell is updated based on
the current input and the previous cell state. Between the input
and the cell are different gates, a unique control mechanism
that enables the LSTM to learn when to forget past state and
update the state when given new input. Let ¢; be memory cell
state at time step ¢ and /; be the output hidden state, then ¢,
and h; are updated by the following equations:

iy = O'(wxixt + wyihi—1 + b;) (1)
Jr = O'(wx_/x, + wh./ht—l + bf) (2)
0y = 0 (wxoXx; + wpohy—1 + by) 3)
gt = [f(wxex; + wpehi—1 + be) 4)
= f[iOca-1+iOg& (5
hy =0, © f(cr) (6)

where o (x) = 1/1 +e™* is the sigmoid function; f(-) is
any activation function; iy, f;, o; and g, are input gate vector,
forget gate vector, output gate vector and state update vector,
respectively; w.,i, w,fr, Wye, Wxe, Wyi, Wyf, Who, Whe are
the weights for linear combination; b;, by, b, and b, are the
relative bias; © is element-wise production.

2) Encoder-Decoder Architecture: We used a two-layer
encoder-decoder architecture for the predicting system as
illustrated in Fig. 3. The architecture employs two networks
(i.e., structural-LSTMs in our method) called the encoder
and the decoder. The encoder processes the input sequence
X = {x]iTpaS[, ... ,xfz,xfl of the length Tp,s and produces
the summary of the past input sequence through the cell state
vector ¢; (including c¢;,; for the first layer and for ¢;> the
second layer)and the hidden state vector A; (including h; |
for the first layer and for A, the second layer). After Tpas
times of recurrent updates by repeating the equations (1) to (6),
the encoder has input a Tp,s-long sequence and updates the
cell state from initial state cjpj; (equals to zero) to final state
c_1 as well as the hidden state from initial state (equals to
zero) to final state A_;. Then, the encoder passes c_j and
h_1 to the decoder and the decoder uses them as initial cell
state and hidden state (i.e., ¢j; = c_1, hj,; = h_1). The
first input of decoding step is the current observed input xé‘.
In every next decoding step, the decoder inputs the output
ytk_1 obtained in the previous step, repeats the equations (1)
to (6) for Tpeq times and generates the output sequence
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Fig. 3. The two-layer encoder-decoder architecture.

In this architecture, the role of the first network (encoder) is
to analyze the interactions among vehicles, and transform the
features into cell states and hidden states as the understanding
of the network while the second network (decoder) is to
extract this understanding result of the sequential inputs and
thus generate future trajectories. Note that the outputs of the
decoder are derived by applying the affine transformation
followed by a projecting function that scale the outputs to
suit expected features.

In the encoder (the first Structural-LSTM, for historical
trajectory inputting), there may be two part of trajectories
of the target SV’s surrounding vehicles, but the target SV’s
lane change trajectory is only one part. In the decoder (the
second Structural-LSTM, for future trajectory predicting), only
the latter part of trajectories of the target SV’s surrounding
vehicles as well as the lane change trajectory of the target
vehicle is predicted. That is, the predicted trajectories are
consistent with the current observed part of trajectories. The
former part of trajectories is only used for providing more
historical information.

C. Structural-LSTM Network

Instead of simply concatenating the features of all the
SVs into one vector and feed it to a single LSTM cell as
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done in [7], [11], which considers the interactions among
SVs as a black box, we extend the single LSTM cell into
a structural-LSTM network including multiple LSTM cells
to processes the inputs separately and learn the interaction
among the SVs hierarchically, as Fig. 4 shown. For the first
structural-LSTM as the encoder:

T S [ k
[x,,x,,x,,x,,x,,x,]:x, (7

cf hf = LSTM' ([x xf 2l ), ctffl,hf71|Wf) 8)

bl = LSTM (Lxt, 31T xf, 6L e i W) )

T = LSTM™ ([l 1™, X1, eIl 1|W1‘) (10)

(
(

o, nf = LsT™™ ([x,,xt ,xf c;il,h;f_1|W‘f) (11)
(1 (12)

cff, bt = LSTM™ ([xf, x", x] ],c, 1 hs 1|W")

et hy = LSTM (Lt xf, /%, /%, 7, ey, by W)
13)

where LSTM (+) is the state updating of LSTM cells (i.e.,
short for (1) to (6)); W is the trainable weights of LSTM
cells; superscript t, f, If, Ir, rf, rr represents the target SV,
front SV, left front SV, left rear SV, right front SV and right
rear SV, respectively; [+, -] means concatenating several vectors
into one vector; cell states ¢; and hidden states h; of all the
LSTM cells are initialized to zero at the start of the recurrent
updating.

As shown in Fig. 4, each vehicle is modeled by an LSTM
cell, whose state recurrence is described as equation (8)
to (13). The number of input arrows in the figure is the
same as the number of input vectors in [-, -] in the equations,
which depends on the number of neighbor vehicles. All six
SV models are in the same types of inputs, outputs and LSTM
cells, except for the different length of input. That means the
interaction between the SVs are bidirectional and symmetric.
But each of six LSTM cells is different with each other in the
input size and trainable weights.

It means that the six different LSTMs are expected to be
functioning in the same way both for the target SV and other
SVs when the SVs’ input features are different.

Instead of using a single LSTM as the decoder and pre-
dicting trajectories of only the target SV in the work of [12],
we make the decoder a structural-LSTM which is similar as
the encoder except that inputs are gained from outputs which
is predicted in the previous step:

f If Ir _rf _rr| _ t pf If 2Ir prf prr
[x,,xt,xt,xt,xt,x,]—V-[h,,ht,h,,h,,h,,ht]
(14)

where V is the trainable weights of the linear projec-
tion function. Note that the trainable weights of LSTM
cells in the decoder is also a different set, denoted
as W'

During each prediction, we use six LSTMs to independently
analyze the interactions between each SV and its neighboring
SVs, respectively, as (8) to (13) shown. Each of the LSTMs
input the features of a SV and its neighboring SVs. Then the
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]
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Fig. 4. The spatial-temporal graph of the structural-LSTM. It models the
interactions among the SVs by sharing their states with each other in radial
connections and passes the cell states and hidden states to the next steps so
that it can use the interactions it learned to predict trajectories in the future.

hidden states of all the LSTMs are passed to a deeper layer
to extract more features (repeat (8) to (13)) or the projection
layer to outputs the prediction results as (14) shown. This
is because using only one layer Structural-LSTM is actually
still a “Multi-input, single-LSTM, and single-output” type of
trajectory prediction as Fig. 1(b) shows. In another word, there
is no difference between one-layer Structural-LSTM and six
independent multi-input LSTMs. Only by stacking multiple
(at least 2) layers of Structural-LSTM can these LSTM
cells share their hidden states thus connecting with each

other. In addition, the more complicated the environ-
ment is, the more layers of Structural-LSTM should we
stack.

By the design of Structural-LSTM network, at each time
step, all six SVs’ trajectories are predicted and each SV’s
trajectory is predicted by inputting its neighbor SV’s historical
trajectory (i.e., considering the influence of other SVs on
the target SV as well as the influence of the target SV on
other SVs). That means our proposed method models the
bidirectional interactions between the target SV and the other
SVs rather than the unidirectional influence of the other SVs
on the target SV.

There are two ways to predict trajectories for all six
vehicles: (1) use one Structural-LSTM to predict all of them;
(2) use six Structural-LSTMs to predict each of them as the
target SV, respectively. The former costs less computational
resource but leads to larger error for the other five SVs.
The latter provides smaller error but costs more computa-
tional resource. We use the second way because these six
Structural-LSTMs can be computed in a distributed way,
which is suitable for online application. The target SV is
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for outputting final result, so its interactions with the other
vehicles are all considered. The other five SVs are for
predicting target SV in the next time step, so it is feasible
if their interactions are partially considered.

D. Training the Model

Since our goal is the high predicting accuracy of the target
SV and meanwhile an acceptable predicting accuracy of the
other SVs, we use weighted RMSE (root mean squared error)
of the output features at all predicted time-steps as the loss
function:

Tpred
1 K < A2
J= > we > GF =350 (15)
Tpred k=1 =1

where wy is the weight on error of the k-th feature y* related
to the observed ground truth f}tk .

The trainable weight set 6 includes W, W, V. In each
training step, the loss is calculated and weights are updated
through BPTT (backpropagation through time) to minimize
the loss:

oJ
0 «—0—n- —

20 (16)

1V. EVALUATION
A. Data

The dataset used in this paper is from the Next Generation
Simulation (NGSIM) [38]. Collected and published by the US
Federal Highway Administration in 2005, the NGSIM is one
of the largest open datasets of naturalistic driving and has been
widely studied in the literature, e.g. [7], [8], [11], [12], [39].

More specifically, the area of interest is the I-80 freeway
in Emeryville, California, of which the covered segment is
approximately 500m in length and 6 lanes (3.66m or 12ft
each) in width (see Fig. 5). The 45-minute trajectory data
were collected from 4:00pm to 4:15pm (transition period) and
from 5:00pm to 5:30pm (rush hour), reflecting different traffic
characteristics during transitional and congested traffic period,
respectively.

The dataset contains more than 5000 trajectories of individ-
ual vehicles, with a sampling rate at 10 Hz. Each sample in
one trajectory includes the information such as instantaneous
speed, acceleration, longitudinal and lateral positions (both
local and global), vehicle length and width, vehicle type, lane
ID, vehicle ID, etc. The local coordinates is set at the up-left
point of the study area, where x is the lateral position of the
vehicle relative to the leftmost edge of the road, and y its
longitudinal position to the entry edge.

B. Features

Totally 48 features are extracted for the trajectory predicting
on [-80 data, eight features for each of the six SVs in our
Structural-LSTM model. We use 9999 as the input feature
value for the missing SV before training the network to
learn such kind of symbolization about missing SVs. This
symbolization works because all the normal values are smaller
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than 100 and an input vector with extreme large element
numbers will be recognized as a signal that there is no vehi-
cle. Once such symbolization of missing vehicles is learned,
Structural-LSTM shall perform well even though there are less
than six vehicles in some scenarios.

1) Target SV: Relative Lateral Position (Two Features).
Lateral distance from the center of the target SV to the left
lane marking and right lane marking.

Relative Longitudinal Position (Two Features). Time head-
way (THW) and space headway (SHW) related to the front
SV, gained from the raw data of THW and SHW in the
dataset. If there is no front SV, the value is denoted as 9999.
The calculation of THW is based on current instantaneous
velocity:

X — Xf

ITHW = (17)

X

where vy is the current instantaneous longitudinal velocity
of target SV, x is the longitudinal position of the front center of
target SV, x¢ is the longitudinal position of the front center of
front SV.

Lateral and Longitudinal Velocity. Gained from the differ-
entiation of the local lateral and longitudinal position instead
of the raw data of velocity in the dataset.

Lateral and Longitudinal Acceleration. Gained from the
differentiation of the lateral and longitudinal velocity.

2) Other SVs: Relative Lateral and Longitudinal Position.
Distance from the center of each SV to the center of the target
SV.

Relative Lateral and Longitudinal Velocity. The difference
between the velocity of each SV and that of the target SV.

Relative Lateral and Longitudinal Acceleration. The differ-
ence between the acceleration of each SV and that of the target
SV.

Relative Width and Length. The difference between the
width and length of each SV and that of the target SV.

In case of the missing of any SV in the samples, all its
eight features are all denoted as 9999. The weights on the
48 features of the weighted RMSE loss function (i.e., wi
in (15)) is set as follows: 10 for the lateral and longitudinal
velocity of the target SV; 5 for the other features of the target
SV; 1 for all the features of the other SVs.
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C. Implementation Details

1) Data Preprocessing: We sampled the target SV tra-
jectories from the dataset with a horizon of 15s (10s for
understanding, 5s for prediction) every 5s. Then we searched
and matched the other SVs’ ID and trajectories. Then these
trajectories were smoothed by the first order Savitzky-Golay
filter. Finally, we downsampled the data at 1Hz and got a
preprocessed dataset with totally 6381 lane changing samples
and 53216 lane keeping samples. In addition, we got a
training set with totally 49613 samples and a testing set with
9984 samples by random selecting.

2) Training Details: We used an embedding dimension
of 32 for the aforementioned features before feeding them
to Structural-LSTM to scale the different features into similar
magnitude. We used the two-layer LSTM cell for all the LSTM
cells in the Structural-LSTM with a fixed hidden state dimen-
sion of 128. Layer Normalization was implemented before
each layer [40]. SeLU was used as the activation function
for all the LSTM cells [41]. A batch size of 256 is used and
the network is trained for 200 epochs using Adam optimizer
with an initial learning rate of 0.0001 [42]. The global norm
of gradients is clipped at a value of 1 to ensure stable
training. The Structural-LSTM model was trained on a single
TITAN-Xp GPU with a Tensorflow-1.6 implementation [43].

3) Predicting Details: We firstly used quadratic inter-
polation to sample the lateral and longitudinal velocity
of the target SV at 10Hz from the 1Hz outputs of the
model. Then we gained the lateral and longitudinal posi-
tion from the integral of the velocity with the initiate local
position.

D. Results

We evaluate our results with two different metrics:

Average Displacement Error. The root mean square
error (RMSE) over all the predicted position points of a
trajectory in five different predicting horizons (Os to 1.0s, Os
to 2.0s, Os to 3.0s, Os to 4.0s and Os to 5.0s).

Final Displacement Error. The distance between predicted
final position point and true final position point at ends of the
five predicting horizons (1.0s, 2.0s, 3.0s, 4.0s and 5.0s).

In Table I, II and III, we compare the performance of our
model with state-of-art methods as well as multiple control
settings:

Structural-LSTM. This is our proposed model that two
Structural-LSTMs composing in encoder-decoder (sequence-
to-sequence, seq2seq) architecture. One high-level LSTM
and five low-level LSTMs input features of the six SVs,
respectively.

Seq2seq-6. This is a simplified setting of our model where
we use naive LSTM instead of Structural-LSTM and simply
input the concatenated features of the six SVs.

Seq2seq-1. This is a simplified setting of our model where
we use naive LSTM instead of Structural LSTM and simply
input the features of the target SV.

Dual LSTMs. Proposed by [8], this model uses one LSTM to
recognize driver’s lane changing intention and another LSTM
to generate trajectories based on the intention outputs.

TABLE I
PREDICTION TIME

Model Prediction Time
Structural-LSTM 0.12s
Seq2seq-6 0.11s
Seq2seq-1 0.09s
Dual LSTMs 0.09s
Single LSTM 0.05s
Linear model <<0.01s

TABLE 11
AVERAGE DISPLACEMENT ERROR

Prediction Horizon

Model
0~1s 0~2s 0~3s 0~4s 0~5s
Structural-LSTM 0.20 0.50 0.70 0.87 0.99
Seq2seq-6 0.20 0.51 0.73 0.93 1.08
Seq2seq-1 0.21 0.52 0.76 1.04 1.31
(a) Longitudinal position error (m)
Model Prediction Horizon
ode]
0~Is 0~2s 0~3s 0~4s 0~5s
Structural-LSTM 0.07 0.15 0.19 0.20 0.21
Seq2seq-6 0.07 0.15 0.19 0.21 0.22
Seq2seq-1 0.06 0.15 0.19 0.21 0.23

(b) Lateral position error (m)

Single LSTM. Proposed by [11], this model uses one naive
LSTM to input features of ten SVs and generate the trajectory
of the SV in the center.

Linear Model. We extrapolate the trajectories with assump-
tion of a constant acceleration.

The time cost for the online prediction is shown as
TABLE L.

For longitudinal average displacement error, results show
that Structural-LSTM model produces the best prediction
while Seq2seq-1 model produces the highest error, no matter
in case of lane changing or lane keeping as Fig. 6 shown.
In addition, there is no significant difference the longitudinal
error between lane changing and lane keeping for all the three
models.

For lateral average displacement error, results show that
Structural-LSTM model produces the best prediction while
Seq2seq-1 model produces the highest error, no matter in
case of lane changing or lane keeping as Fig. 6 shown.
In addition, the lateral position error is significantly lower in
case of lane keeping rather than lane changing for all the three
models.

For longitudinal final displacement error, results show that
the Single LSTM model produces the highest error in each
prediction horizon. The Dual LSTMs model and the Linear
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TABLE III
FINAL DISPLACEMENT ERROR

Prediction Horizon

Model Is 2s 3s 4s 5s
Structural-LSTM 0.57 1.05 135 1.65 1.93
Seq2seq-6 0.59 1.08 1.46 1.85 2.23
Seq2seq-1 0.60 1.10 1.71 251 3.48
Dual LSTMs 047 1.39 2.57 4.04 5.77
Single LSTM 0.71 1.98 3.75 5.96 9.00
Linear model 0.50 1.43 2.63 4.1 5.8
(a) Longitudinal position error (m)

Model Prediction Horizon

Is 2s 3s 4s 5s
Structural-LSTM 0.19 0.28 0.28 0.29 031
Seq2seq-6 0.19 0.28 0.29 0.32 0.37
Seq2seq-1 0.18 0.28 0.30 0.34 0.40
Dual LSTMs 0.15 0.26 0.38 0.45 0.49
Single LSTM 0.11 0.25 0.33 0.40 0.47
Linear model 0.16 0.38 0.60 0.82 1.05

(b) Lateral position error (m)
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Fig. 6. Average displacement error of trajectory prediction over 5s.
model produce better prediction, especially the Dual LSTMs

model producing the lowest error in prediction horizon
of 1.0s.
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Fig. 7. Final displacement error of trajectory prediction.

In case of prediction horizon longer than 1.0s, the
Seq2seq-1, Seq2seq-6 and Structural-LSTM models produce
much lower error. We note that the Seq2seq-6 model pro-
duces better prediction than the Seq2seq-1 model by inputting
the features of the other five SVs. We also note that the
Structural-LSTM model produces better prediction than the
Seq2seq-6 model by hierarchically learning the interaction
between the target SV and the other SVs.

For lateral final displacement error, results show that the
Linear model produces the highest error in prediction horizon
longer than 1.0s. The Single LSTM model and Dual LSTMs
produce better prediction, especially the Single LSTM model
producing the lowest error in prediction horizon shorter than
2.0s. In case of prediction horizon longer than 1.0s, the
Seq2seq-1, Seq2seq-6 and Structural-LSTM models produce
lower error. Similar as the longitudinal position predicting,
the more input features and the inter-vehicle interactions
contribute to a higher accuracy of lateral position predicting
in long-term horizon.

The improvement of using interaction is shown in Fig. 7.
The orange line is Seq2seq-6 method which simply inputs
trajectories of six SVs and outputs trajectories of six SVs in
one LSTM cell. The blue line is our proposed method which
models interaction using connected six LSTM cells. It shows
that the proposed method reduced error over 13% and 16%
for longitudinal and lateral prediction, respectively.

Trajectory predictions in three different scenarios are pre-
sented in Fig. 8. The trajectories of center SV, front SV,
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Longitudinal position (m)
330 340 350 360 370

Lateral position (m)

Fig. 8. Examples of typical trajectory prediction under multi-interactive
scenario using Structural-LSTM model: (a) left lane changing and following
left lane changing; (b) following lane keeping and braking; (c) left lane
changing and following right lane changing (Center SV in white line, front
SV in purple line, left front SV in green line, left rear SV in red line, right
front SV in yellow line, right rear SV in blue line; true trajectoriy in solid
line, predicted trajectoriy in dashed line).

left front SV, left rear SV, right front SV and right rear SV
are represent by white lines, purple lines, green lines, red
lines, yellow lines and blue lines, respectively, with predicted
trajectories in dashed lines and ground truth in solid lines.
Note that all the six SVs here are the target SV, i.e., the
trajectories of the six SVs are predicted from six different
test samples, respectively, where each of them is the target
SV, instead of being predicted from a single sample where
only the center SV is the target SV. In Fig. 8(a), a left lane
changing trajectory of the center SV (white), a following
left lane changing trajectory of the right rear SV (blue),
lane keeping trajectories of the left front SV (green), front
SV (purple) and the right front SV (yellow) are successfully
predicted. The right rear SV (blue) is trying for a right lane
changing from Lane 5 to Lane 6 at first but soon moves
back to Lane 5. This is because the low-speed right front
SV (yellow) leaves rare safety area for the right rear SV (blue)
to stay in Lane 6 while the center SV (white) changing from
Lane 5 to Lane 4 provides enough safety area for the right
rear SV (blue) to change back to Lane 5. By understanding
such interaction, the proposed Structural-LSTM model can
predict the overtake-like trajectory of the right rear SV (blue).
In Fig. 8(b), lane keeping trajectories of the five SVs are
successfully predicted. By understanding the effect of the
decelerating SVs in front and the constraints of SVs in
the adjacent lanes, the proposed Structural-LSTM model can
predict low-speed trajectories of the center SV (white) and the
front SV (purple). In addition, a high-speed trajectory of the
right front SV (yellow) is also predicted as no SV is blocking
in front of it. In Fig. 8(c), a left lane changing trajectory
of the front SV (purple), a following right lane changing
trajectory of the center SV (white), lane keeping trajectories
of the left rear SV (red) and the right rear SV (blue) are

successfully predicted. The center SV (white) is changing to
Lane 5 because the front SV (purple) changing from Lane 5 to
Lane 4 provides enough safety area for the center SV (white)
to change to Lane 5. The proposed Structural-LSTM model
understands this interaction and predict the trajectories.

V. CONCLUSION

In this paper, a multi-sequence learning network called
structural-LSTM is proposed to learn interaction patterns
among surrounding vehicles and thus predicting their
long-term (5s in the future) trajectories. The evaluation of
this method on NGSIM dataset shows better prediction accu-
racy indicated by smaller RMS error for both longitudinal
and lateral position prediction over different time horizons.
Compared to the state-of-art studies, the proposed network
has the following advantages: (1) adaptability to various road
geometry due to the special representation of lateral deviation
from the center of the target lane; (2) consider multiple
SVs as a whole which reflects interaction among these SVs;
and (3) make use of the interactions not only in understanding
historic trajectories (in encoder) but also in predicting future
trajectories (in decoder).

This study provides a promising way to handle motion
prediction of SVs for autonomous driving systems. Due to
the accessibility of data, we use only lane-keeping and lane
changing maneuvers for evaluation. But the basic procedure is
the same for other scenarios. The preliminary research opens
various perspectives for future research: (1) to generalize the
proposed model in different scenarios, e.g. intersections and
unstructured roads; (2) to address the motion prediction as a
stochastic problem which requires distributions and confidence
intervals instead of just a single value; (3) to capture spatial
information using visual- and map-based cues in a CNN
model.
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