
Accelerated Inverse Reinforcement Learning with
Randomly Pre-sampled Policies for Autonomous

Driving Reward Design
Long Xin1, Shengbo Eben Li*1, Pin Wang2, Wenhan Cao1,

Bingbing Nie1, Ching-Yao Chan2, and Bo Cheng1

Abstract—To learn a reward function that a driver adheres
to is of importance to the human-like design of autonomous
driving systems. Inverse reinforcement learning (IRL) is one of
the recent advances that can achieve this objective, but it often
suffers from the low efficiency of generating optimal policy by
reinforcement learning (RL) each time when updating reward
weights. This paper presents an accelerated IRL method by
approaching the optimal policy among randomly pre-sampled
policies in designed sub-space instead of finding it through RL
in the whole policy space. The corresponding trajectories are
targeted via an optimal trajectory selector in the candidate
trajectory library generated by pre-sampled policies. The
weights then are updated by comparing the selected trajectories
and the expert ones. The proposed method is very suitable for
improving learning efficiency for low-dimensional problems like
autonomous driving, whose expert policies are nearly tractable.
Results with simulated driving data show that it only took
11 iterations to converge, while the average longitudinal RMS
error of the recovered trajectories based on the learned reward
function was only 2.14m.

Index Terms—Inverse reinforcement learning, pre-sampled
policy, reward design, maximum entropy, autonomous driving.

I. INTRODUCTION

DECISON-MAKING is one of the key techniques in au-
tonomous driving that significantly influences automa-

tion level. The decision making problem can be formulated in
a Markov Decision Process (MDP) setting, where it usually
assumes a reward function is given [1]. However, the reward
function is frequently difficult to specify from scenarios to
scenarios. For example, when driving on road, drivers typ-
ically trade off many different aspects, such as maintaining
a safe following distance, maintaining a reasonable speed,
driving along the center line, and so on. To specify a reward
function for such a driving task, a set of weights have to

This study is supported by International Sci&Tech Cooperation Program
of China with 2016YFE0102200, NSF China with U1664263 and Beijing
NSF with JQ18010. All correspondence should be sent to S. E. Li.

L. Xin, S. E. Li, W. Cao, B. Nie and B. Cheng are with State Key
Laboratory of Automotive Safety and Energy and School of Vehicle and
Mobility, Tsinghua University, Beijing, 100084 China (e-mail: {xin-l13,
cwh19}@mails.tsinghua.edu.cn, {lishbo, nbb, chengbo}@tsinghua.edu.cn)

P. Wang and C-Y. Chan are with California PATH, University of
California, Berkeley, Richmond, CA, 94804 USA (email: {pinwang, cy-
chan}@berkeley.edu)

be assigned to define exactly how drivers prefer to balance
these driving goals [2]. Usually, it is very tricky and time-
consuming to tweak these weights manually until the desired
driving behavior is obtained.

One solution is to learn from experts, not to simply mimic
the external actions that experts conduct under each state,
but to deeply learn the internal reasoning mechanism. The
problem of deriving a reward function from observed expert
behaviors is referred as inverse reinforcement learning (IRL)
[3]. The expert human driver is assumed to try to optimize
an unknown reward function when he drives, and the goal
of IRL is to find the specific reward function that yields
to an corresponding optimal driving policy which performs
as well as the expert’s, where the performance is measured
with respect to the difference of reward between the expert’s
trajectories and the learner’s generated trajectories [4].

There are two popular class of methods for learning reward
function weights. One is margin-based method, e.g., appren-
ticeship learning [4], max margin planning [5] and structured
IRL [6], that finds the optimal weights by minimizing the
feature expectations between the expert trajectories and the
generated ones. The other one is entropy-based method, e.g.,
maximum entropy IRL [7] and relative entropy IRL [8], that
finds the optimal weights by maximizing the entropy of the
generated trajectories.

For margin-based IRL, given a feature mapping from
states to reward and the experts feature expectations, the
goal is to find a policy and its generated trajectories whose
feature expectations are close to the expert’s. Abbeel and Ng
(2004) proved that feature matching was both necessary and
sufficient to achieve the same performance as the expert if
the reward function was a linear combination of different
features [4]. To accomplish this, such a policy can be found
by iteratively solving a max margin problem to achieve a
relatively small difference of feature expectations. Unfortu-
nately, recovering the expert’s exact reward weights can be
very difficult under such concept. The matching of feature
expectations is ambiguous as many reward weights, includ-
ing degeneracies (e.g, all zeroes), can satisfy optimality of
expert trajectories, or, each policy can be optimal for many
reward functions and many policies can lead to the same
feature expectations.

2019 IEEE Intelligent Transportation Systems Conference (ITSC)
Auckland, NZ, October 27-30, 2019

978-1-5386-7024-8/19/$31.00 ©2019 IEEE 2757

Authorized licensed use limited to: Tsinghua University. Downloaded on December 02,2020 at 06:19:06 UTC from IEEE Xplore. Restrictions apply.

Ziebart et al. (2008) employed the principle of maximum
entropy to resolve ambiguities in choosing trajectory dis-
tributions [7]. This principle maximizes the uncertainty [9]
and leads to the distribution over behaviors constrained to
matching feature expectations, while being no more commit-
ted to any particular trajectory than this constraint requires.
Maximizing the entropy of the distribution over trajectories
subject to the feature constraints from expert’s trajectories
implies to maximize the likelihood under the maximum
entropy (exponential family) distributions. The problem is
convex for MDPs and the optima can be obtained using
gradient-based optimization methods. The gradient is the
difference between empirical feature expectations and the
learners expected feature expectations.

With the development of the two aforementioned main-
streams of methods, many researchers made their own
contributions to IRL. Babes et al. (2011) [10] applied
apprenticeship learning to the problem of learning from
unlabeled expert trajectories generated by varying intentions.
They derived an expectation-maximum (EM) approach that
clustered observed trajectories by inferring the objectives
for each cluster, and then used the constructed clusters
to quickly identify the intention of a trajectory. Kuderer
et al. (2015) [11] represented the 2D driving behavior of
vehicles using trajectories r that are mappings from time to
a 2D position. The authors used quantic splines as a finite-
dimensional representation of trajectories to overcome the
problem that the space of such trajectories has infinitely
many dimensions. Wulfmeier et al. (2015) [12] replaced the
linear combination of features with a deep neural network,
which had a better approximation of reward function based
on the feature representation of MDP states.

IRL has made great progress in the past two decades,
but still faces many challenges. One of the challenges is
that the existing IRL algorithms need to find the optimal
policy under the current reward function first, which is
inseparable from the involvement of reinforcement learning
(RL). However, it is very time-consuming to obtain the
optimal policy through RL, especially for problems with
continuous states, e.g., autonomous driving. Even worse,
it is necessary to call RL repeatedly to solve the optimal
strategy each time the weighs are updated, which makes
the learning process extremely long. Moreover, different
RL methods lead to different optimal policies and different
generated trajectories, thus having influence on their feature
expectations when updating weights [13]. Therefore, how to
deal with the RL part brings new challenges to IRL.

The above-mentioned methods bring challenges of time-
consuming learning procedure caused by dependency on
RL’s learning optimal policy, and randomness of results
caused by the selection of specific RL methods. Therefore,
this study proposes an inverse reinforcement learning method
based on pre-sampled policies, which replaces calling RL
to generate the optimal trajectory in each iteration with se-
lecting the optimal trajectories from the candidate trajectory
library generated by random sampled policies. The policy

space constructed with human knowledge for driving creates
a reasonably small neighborhood for the expert driver’s
policy, thus making it much easier to find the optimal
policy (and its corresponding trajectories) and improving the
efficiency of weights updating.

The rest of the paper is organized as follows: Section
II formulates the problem mathematically. Section III intro-
duces the proposed method. Section IV introduces the imple-
mentation of the proposed method for autonomous driving
on highway. Section V introduces the simulation scenario
and data simulated for test, while Section VI presents the
results. Section VII summarizes the major contributions and
concludes this paper.

II. PROBLEM FORMATION

Given a set of N expert trajectories D =
{ξExp

1 , ξExp
2 , ..., ξExp

N }, each of them is a sequence of
state-action pairs with length Ti:

ξExp
i = {(s(i)0 ,a

(i)
0), (s

(i)
1 ,a

(i)
1), ..., (s

(i)
Ti
,a

(i)
Ti

)} (1)

Define the feature vector f ∈ RH on trajectory, which is a
mapping from a trajectory to feature values:

f : ξ → [f1(ξ), ..., fH(ξ)]T (2)

These features can be used to describe the characteristics of
how a car is driven on road. Then, the expert driving char-
acteristics are calculated by averaging all expert trajectories:

fExp =
1

N

N∑
i=1

f(ξExp
i) (3)

where fExp ∈ RH is served as the expert feature expecta-
tion.

In this study, the reward function is assumed to be a linear
combination of features weighted by ω ∈ RH :

R(ξ) = ωTf(ξ) (4)

where ω is the reward weight to be learned in IRL.
In general, there are many distributions with feature

matching property. Within all distributions that match fea-
tures, Ziebart et al. (2008) [7] proposed to select the one that
maximized the entropy, because it was the best way to de-
scribe it since it was the least biased distribution. Therefore,
given a probabilistic model that yields a distribution over
trajectories p(ξ|ω), the goal is to find the optimal weights
ω∗ maximizing the entropy of these trajectories subject to
matching feature expectations of expert trajectories:

max
ω

∫
−p(ξ|ω) log p(ξ|ω)

s.t. fExp =

∫
p(ξ|ω)f(ξ)∫

p(ξ|ω) = 1

(5)

2758

Authorized licensed use limited to: Tsinghua University. Downloaded on December 02,2020 at 06:19:06 UTC from IEEE Xplore. Restrictions apply.

The problem can be solved by Lagrangian multiplier method:

L(ω) =

∫
p log p−

H∑
h=1

λh(

∫
pfh − fhExp)− λ0(

∫
p− 1)

(6)
where λh(h = 1, ..,H) are auxiliary parameters. Let the
partial differential for p be equal to 0, then the solution of
the constrained optimization problem in (5) has the form:

p(ξ|ω) =
1

Z
e−

∑H
h=1 λhf

h

∼ e−ω
T f(ξ) (7)

where Z is the normalization factor and auxiliary parameters
are associated with weights. One can interpret ωTf(ξ) as a
cost function, where drivers are exponentially more likely to
select trajectories with lower cost.

The weights can be solved by maximum likelihood
method. Usually, it is not possible to compute ω analytically,
but the gradient of the Lagrangian function of the constraint
optimization problem with respect to ω can be computed.
It proves that this gradient is the difference of feature
expectations between the selected trajectories and the expert
ones:

∇L(ω) = fExp −
∫
p(ξ|ω)f(ξ) (8)

Unfortunately, it is difficult to compute Ep(ξ|ω)[f] =∫
p(ξ|ω)f(ξ) due to the curse of dimensionality of trajectory

states in the integral. An alternative approach is to compute
the feature values of the most likely trajectory as an approx-
imation of the feature expectation [14]:

Ep(ξ|ω)[f] ≈ f(argmax
ξ

p(ξ|ω)) (9)

With this approximation, only the optimal trajectory asso-
ciated to the optimal policy is needed, in contrast to regarding
the generated trajectories as a probability distribution. The
test results in Sec. V also corroborate this assumption in the
reward design for autonomous driving.

III. IRL WITH PRE-SAMPLED POLICIES

A. Proposed Method

The objective of IRL is to find the optimal weights ω∗

based on which reward function yields to an optimal policy
with its optimal trajectories whose feature expectations are
the same as the expert’s. The optimal reward is usually
obtained by gradient descend method, and the main issue of
IRL is the low efficiency of finding such an optimal policy
at each iteration, because it usually means involvement
of reinforcement learning which is very time-consuming.
Therefore, the goal of the proposed method is to avoid
calling RL repeatedly each time when updating weights. An
intuitive idea is to randomly sample a massive of policies in
advance and then to pick one of them as the optimal policy
instead of finding it via RL. Fig.1 shows the concept of the
proposed pre-sampled IRL method. The method consists of
two procedures:

Fig. 1. Concept of the proposed IRL method

(1) To generate a large candidate trajectory library with
random policy. The sample space is designed with human
knowledge and becomes a relative small subspace of policy,
thus making it faster to target the optimal policy. Then,
with randomly sampled policies in the sub-space, candidate
trajectories can be generated given the same initial states as
the expert’s and the environment model.

(2) To update reward weights with selected trajectories.
The above-mentioned step is only executed once. When
learning, an optimal trajectory selector is designed to locate
the optimal policy and its corresponding trajectories from the
candidate trajectory library at each iteration. Then, a gradient
descent updater is used for weights updating based on the
designed likelihood function with respect to the selected
trajectories and the expert ones.

B. Trajectory Generator with Random Policy

A closed loop system with policy and environment model
is constructed for trajectory generation. The policy here is not
only limited to RL, but also open to control-based methods or
search-based methods. Note that human drivers often selects
action in a specific policy space, therefore, a subspace of
policy ΠSub ⊂ Π is selected by using human knowledge of
vehicle controllers. As shown in Fig.2, the selected subspace

Fig. 2. Policy pre-sampling in designed subspace

2759

Authorized licensed use limited to: Tsinghua University. Downloaded on December 02,2020 at 06:19:06 UTC from IEEE Xplore. Restrictions apply.

shall be the neighbor of the optimal policy which contains
the optimal policy within it. The smaller the ΠSub is chosen,
the faster speed IRL can achieve to target the optimal policy.

By randomly sampling in ΠSub for M times (large
enough), a set of candidate policies are obtained:

{πGen
j ∈ ΠSub, j = 1, ...,M} (10)

where each πGen
j can generate N corresponding candidate

trajectories:

ξGen
1,j = {(s(1,j)0 ,a

(1,j)
0), ..., (s

(1,j)
Ti

,a
(1,j)
Ti

)}
...

ξGen
i,j = {(s(i,j)0 ,a

(i,j)
0), ..., (s

(i,j)
Ti

,a
(i,j)
Ti

)}
...

ξGen
N,j = {(s(N,j)0 ,a

(N,j)
0), ..., (s

(N,j)
Ti

,a
(N,j)
Ti

)}

(11)

Note that each of them starts from the same initial state as
the expert trajectory, i.e., s(i,j)0 = s

(i)
0 and moves abide by

sampled policy and environment model:

a
(i,j)
t = πGen

j (s
(i,j)
t) (12)

s
(i,j)
t+1 = F (s

(i,j)
t ,a

(i,j)
t) (13)

where F (·, ·) is a representation of environment dynamics.
In IRL, it is often selected to be a mathematical model for
fast computation in simulation. In fact, actual environment
can be also used so long as sampled policy is feasible.

Note that in very few cases the optimal policy may locates
at the edge of or even outside ΠSub. Therefore, to cover
all different kinds of policies, the sampling mechanism of
driving policies can be designed to have the ability for policy
exploration at certain probability as well.

C. Learner of Reward Weights

The learning process of reward weights includes two parts:
(1) optimal trajectory selector, which is designed to select
trajectories for comparison with the expert ones, and (2)
gradient descent updater, which updates the reward weights
by maximizing an likelihood function.

The goal of the optimal trajectory selector is to find the
optimal trajectories {ξSeli , i = 1, ..., N}, given the initial
state of each expert trajectory, which originally generated by
the optimal policy solved iteratively through RL each time
when updating the weights.

According to (7), the probability of trajectory under cur-
rent weights is p(ξ|ω) = e−ω

T f(ξ). It is known that the
optimal trajectory generated by the optimal policy must have
the highest probability. Therefore, for a candidate trajectory
in the library, the higher the probability of its occurrence,
the closer it is to the optimal trajectory. Hence, the optimal
trajectory selection mechanism is designed as follows:

ξSeli = ξGen
i,j∗ ∼ argmax

j

1

N

N∑
i=1

p(ξGen
i,j |ω) (14)

where the trajectory with the highest probability is selected
as the optimal trajectory given pre-sampled policies.

Then, the feature expectations of the selected trajectories
can be approximated by calculating the average feature
values for all the selected optimal trajectories:

fSel =
1

N

N∑
i=1

f(ξGen
i,j∗) (15)

and (8) is rewritten as:

∇L(ω) = fExp − fSel (16)

with which weights are updated by gradient descent method:

ω ← ω + α · ∇L(ω) (17)

where α is learning rate. Like many other methods, the
optimal weights can be obtained by repeating the above-
mentioned steps until convergence.

IV. IMPLEMENTATION FOR AUTONOMOUS DRIVING

The proposed pre-sampled IRL method is applied to the
design of the reward function for autonomous driving on
highway. This section introduces the details of the environ-
ment model and the random policy generator in the pre-
sampling part, as well as the design of the reward function
and the optimal trajectory selector in the learning part.

A. Environment Model

In this paper, surrounding vehicles are driven according to
the track recorded in the data set instead of being predicted
each time during learning [15]. For the autonomous vehicle,
the kinematic bicycle model is used and the continuous non-
linear equations that describe the kinematic bicycle model in
an inertial frame are:

ẏ = v cos (β + ψ) (18)
ẋ = v sin (β + ψ) (19)

ψ̇ =
sinβ

lr
v (20)

v cosβ = vf cos δf (21)

where x and y are coordinates of vehicle centroid, ψ is
heading, v is speed, lr is distance from centroid to rear
axles, β is angle of velocity with respect to longitudinal axis
of the vehicle. It is assumed that vehicle centroid coincides
with geometric center and initial front wheel angle of any
trajectory is zero.

Note that the control inputs of the vehicle model are front
wheel steering angle δf , and its acceleration v̇f = af . The
vehicle model is implemented in the decretized form.

2760

Authorized licensed use limited to: Tsinghua University. Downloaded on December 02,2020 at 06:19:06 UTC from IEEE Xplore. Restrictions apply.

B. Random Policy Sampling

As introduced in Sec. III, it is unnecessary to use RL-
based policies. In this study, linear controllers with uncertain
gains are chosen as the policy subspace ΠSub as they are
widely used in vehicle control [16]. Since only longitudinal
scenarios is evaluated, the longitudinal controller is designed
as follows:

af = KT
LonsLon (22)

= K1
Lon∆dLon +K2

Lon∆vLon +K3
Lon∆aLon (23)

where KLon is vector for controller’ feedback gains; aLon is
longitudinal acceleration of the autonomous vehicle, ∆dLon,
∆vLon, and ∆aLon are relative longitudinal distance, speed,
and acceleration to front vehicle.

There are several advantages in choosing vehicle controller
with uncertain feedback gains as a stochastic policy space:
(1) the vehicle controllers are designed based on driver
models, which contains abundant human prior knowledge.
The policy subspace with respect to feedback gains can be
regarded as a neighbor of the optimal policy, which greatly
reduces the policy search space and improves the efficiency
when targeting the optimal policy; (2) The vehicle controllers
naturally cooperate with the aforementioned vehicle model
to connect states with actions, so that the change of vehicle
states obeys the constraint of the controller inputs, thus sig-
nificantly compressing the generated trajectory state space.
(3) Compared with RL-based policy with thousands of neural
network parameters, linear controllers have intuitive and
explicit mathematical expression with only a few feedback
gains, which can facilitates the generation of random policy
by simply sampling in them.

Based on the designed controllers, driving policies can
be generated by random sampling in the feedback gains
space. Just in case the sampled policy set doesn’t contain the
optimal policy, exploration of policy is introduced as well for
supplement. Regardless of current states, actions associated
are selected randomly in the entire action space:

a
(i,j)
t = random(a) (24)

which can be regarded as an unbiased Monte Carlo sampling
of policy in the whole policy space. According to the law
of large numbers, the sampled policy set, when sampling
enough times, shall contain the optimal strategy.

C. Features for Reward Function

The pre-sampled IRL method is applied to highway sce-
narios. Features are proposed that capture relevant properties
of driving behaviors related to aspects of safety, comfort, effi-
ciency and targeted driving maneuvers. The specific features
are defined as following:

1) Front Vehicle Time Headway: the relative spatial rela-
tion to the front vehicle considering the ego vehicle speed:

THWf = |yfront − y
ẏ

− THW des
f | (25)

Algorithm 1 Pre-sampled IRL for Autonomous Driving

Input: Expert trajectories {ξExp
1 , ..., ξExp

N }
Output: Learned weights ω∗ for the reward function
1: Random Trajectory Generation
2: Construct the policy subspace Πsub for autonomous

driving with (22)
3: Randomly sampling in Πsub with exploration to obtain
πGen
j , j = 1, ...,M

4: for each expert trajectory bmξExp
i do

5: Extract initial states s(i)0 for each candidate trajectory
6: Generate candidate trajectory ξGen

i,j with sampled
policy πGen

j and the environment model in (18)

7: Reward Weighs Learning
8: Compute the empirical feature vector averaged over all

expert trajectories fExp = 1
N

∑N
i=1 f(ξExp

i)
9: Initialize the weight vector ω0 with arbitrary values

10: while not convergent do
11: Computer probability with respect to reward for all

generated candidate trajectories
12: Select optimal trajectories ξSeli according to (14)
13: Compute approximated feature expectation for se-

lected trajectories fSel = 1
N

∑N
i=1 f(ξSeli)

14: Use the gradient in (16) to update weights
15: return

where yfront is longitudinal position of front vehicle, y and
ẏ are longitudinal position and speed of the ego vehicle,
THW des

f is desired time headway to front vehicle.This
feature is related to driving safety.

2) Longitudinal acceleration |ÿ|, which is related to driving
comfort and targeted driving maneuver.

3) Desired Speed: the ego vehicle is expected to drive at
desired speed vdes, which is set as speed limit:

fdes = |v − vdes| (26)

Algorithm 1 presents the proposed pre-sampled IRL
method for autonomous driving reward design.

V. SIMULATION DATA

The car-following driver model (policy) has been fully
studied while lane change model (policy) needs further
research. Therefore, the typical car-following scenario with
the ego vehicle and one front car is chosen as the simulation
scenario. As illustrated in Fig.3, when a driver keeps driving
in one lane, he or she shall consider the impact from its front
vehicle.

The simulation data for expert trajectories used in this pa-
per is simulated using modified linear car-following (MLCF)
model, which has been widely used as car-following policy
[17] recently. The MLCF model is as follows:

af = SV E · kV · (vf − v) + SDE · kD · (y − ydes) (27)

2761

Authorized licensed use limited to: Tsinghua University. Downloaded on December 02,2020 at 06:19:06 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Illustration of car-following scenario

where kV = 0.2583 and kD = 0.0125 are nominal control
gains, vf is front vehicle speed. ydes, SV E is driver sensi-
tivity to velocity error, SDE is driver sensitivity to distance
error, and they are described as:

ydes = r · v2 + Th · v + y0 (28)

SV E−1 = kSV Evf + dSV E (29)

SDE−1 = kSDEvf + dSDE (30)

where y0 = 5.6m is the stopping offset, Th = 2.4s is
the equivalent to the time headway, r = −0.006m/s2 is
a quadratic coefficient, reflecting Ths changes at high speed,
and kSV E = −0.002, dSV E = 1.025, kSDE = 0.053 and
dSDE = 0.339 are model coefficients.

The initial relative position between the ego vehicle
and the front vehicle is randomly chosen from a normal
distribution σ(40m, 6m) and the initial speed for both
vehicles is randomly chosen from a normal distribution
σ(10m/s, 5m/s). The front vehicle speed obeys peirodical
fluctuation 10 + 5 sin(2πt/10) during simulation while the
ego vehicle speed is controlled by (22). In total, the simulated
data set contains 100 expert trajectories, each with a length
of 60s and a sampling rate at 10Hz.

The subspace πsub is constructed based on (23), where
the controller gains are within [0, 0.01], [0, 0.5], and [0, 0.5].
The Monte Carlo sampling method is then applied to ran-
domly generate 1,000,000 candidate policies. Note that, there
is 10% probability that the randomly generated controller
gains could go beyond the pre-set range and another 10%
probability that the acceleration is randomly chosen from
[−2.5m/s2, 2.5m/s2] instead of being calculated from (23).

VI. RESULTS

The proposed method was tested on the data set simulated
above with the vehicle kinematic model and feature normal-
ized to [0, 1]. The learning process was conducted on a laptop
with a 2.5GHz CPU and 8Gb RAM. The learning rate is
1.0 initially and adapted consequently. The proposed method
was evaluated in terms of learning efficiency, learned reward
weights reasonableness and recovered trajectory effect.

TABLE I
TIME SPENT FOR LEARNING

Method Total Iteration Total Time Time/Iteration

Pre-sampled IRL 11 17.85 1.62s

1 2 3 4 5 6 7 8 9 10 11

Iteration

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

|G
ra

d
ie

n
t|

Fig. 4. Gradient convergence curve

A. Learning Efficiency

The convergence curve of gradient is shown in Fig.4. The
+∞-norm of gradient of the proposed method converged
rapidly from around 100 to nearly zero (< 0.15) within 11
iterations. That shows the relationship Ep(ξSeli |ω∗) ≈ fExp

is established with final optimal weights obtained, which
means the distribution generated with them is similar to the
distribution of expert’s.

From another perspective, the time used during learning
by the proposed method is significantly small. Table I
shows the total number of iterations, total time and average
iteration time consumed by the proposed method. It can be
seen from the table that the proposed method only used
17.85s for online weights updating, which increased linearly
with iteration. Even though the pre-sampling time consumed
239.11s, the proposed method still saves tremendous learning
time and accelerating the learning process.

B. Learned Weights

The initial weights is [0, 0, 0] as the first candidate policy is
chosen as the optimal policy. The learned feature weighs are
expected to encode the trade-off between antagonistic goals,
such as the desired speed and limited accelerations. Table II
shows the weights learned by the proposed pre-sampled IRL
algorithm while that the corresponding gains value for the
longitudinal controller K1

Lon, K2
Lon, and K3

Lon are 0.0018,
0.280, and 0.230.

Among them, the time headway to the front vehicle is
related to safety, which means that drivers put safety as the
first priority during driving. Comfort comes as the second as

TABLE II
LEARNED WEIGHTS

Feature THWf |ÿ| |v − vdes|

Weight 0.4491 0.3784 0.2961

2762

Authorized licensed use limited to: Tsinghua University. Downloaded on December 02,2020 at 06:19:06 UTC from IEEE Xplore. Restrictions apply.

TABLE III
RMSE FOR LONGITUDINAL POSITION

Method Max Min Mean

Pre-sampled IRL 5.23m 0.00m 2.14m

the longitudinal acceleration of vehicles affects the comfort
of passengers. Compliance comes last as the weight of
the deviation from the expected speed is the smallest. One
possible reason is that the radical driving behavior like
overtaking is restrained under car-following scenario, which
leads to drivers’ maintaining a relatively stable speed in the
course of driving.

C. Recovered Trajectories
The learned weights are implemented with the corre-

sponding driving policy for autonomous driving in the car-
following scenario, which yields to smooth, comfortable tra-
jectories, while keeping a safe distance to the front vehicle.
Fig.5 shows the comparison of expert vehicle and learner
vehicle, in terms of car-following trajectory, speed, accelera-
tion and time headway (the latter three are related to features
designed). When the ego vehicle drove in the lane, it tried to
balance the different feature reward. As a consequence, the
time headway feature kept a safe distance between the ego
vehicle and the front vehicle during driving. Meanwhile, the
features that capture the longitudinal acceleration and speed
deviation guaranteed a comfort and reasonable trajectory that
showed characteristics as the expert’s.

Quantitatively speaking, the trajectories recovered using
the proposed methods is compared with the expert trajecto-
ries in terms of root mean square error (RMSE). Shown in
Table III, RMSE is calculated for all recovered trajectories
with max, min and mean error being 5.23m, 0m and 2.14m.
The means the average car-following error is less then one
car length while the max error is no more than twice the car
length when the average speed is 10m/s.

VII. CONCLUSION

A pre-sampled inverse reinforcement learning method
for autonomous driving reward design is proposed in this
paper. The candidate trajectory library is generated by pre-
sampling in the designed driving policy subspace, while
the corresponding optimal trajectories at each iteration for
weights updating are chosen via the designed optimal tra-
jectory selection mechanism. The traditional RL module for
obtaining optimal policy is avoided for generating optimal
trajectories for matching feature expectations of the expert’s,
thus accelerating the learning process. Results show that
it only took 11 iterations to converge, while the average
longitudinal RMS error of trajectories recovered by the
learned reward is 2.14m compared to the expert trajectories.

This study provides a promising approach to accelerating
the IRL learning process for problems like autonomous driv-
ing with pre-designed policy subspace by human knowledge.
The preliminary research opens various perspectives

0 10 20 30 40 50 60

Time (s)

100

200

300

400

500

600

L
o
n
g
it

u
d
in

al
 P

o
si

ti
o
n
 (

m
)

Recoverd Trajectory

Expert Trajectory

Front Vehicle Trajectory

(a) Trajectory

0 10 20 30 40 50 60

Time (s)

0

5

10

15

20

S
p
ee

d
 (

m
/s

)

Learner Vehicle

Expert Vehicle

Front Vehicle

(b) Speed

0 10 20 30 40 50 60

Time (s)

-6

-4

-2

0

2

4

6

 a
cc

el
er

at
io

n
 (

m
/s

2
)

Learner Vehicle

Expert Vehicle

Front Vehicle

(c) Acceleration

0 10 20 30 40 50 60

Time (s)

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

T
im

e
H

ea
d
w

ay
 (

s)

Learner Vehicle

Expert Vehicle

(d) Time Headway

Fig. 5. Car-following scenario comparison of expert vehicle and learner
vehicle

for future research: (1) to generalize the proposed method
in different driving scenarios, e.g. intersections and unstruc-
tured roads; (2) to generalize the proposed method under a
distributed learning framework as it does for RL [18]; (3)
to address the learning problem as a stochastic one which

2763

Authorized licensed use limited to: Tsinghua University. Downloaded on December 02,2020 at 06:19:06 UTC from IEEE Xplore. Restrictions apply.

requires probability distributions of generated trajectories
and changing environments.

REFERENCES

[1] P. Wang, C.-Y. Chan, and A. de La Fortelle, “A reinforcement learning
based approach for automated lane change maneuvers,” in 2018 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2018, pp. 1379–1384.

[2] Y. Guan, S. E. Li, J. Duan, W. Wang, and B. Cheng, “Markov
probabilistic decision making of self-driving cars in highway with
random traffic flow: a simulation study,” Journal of Intelligent and
Connected Vehicles, vol. 1, no. 2, pp. 77–84, 2018.

[3] A. Y. Ng, S. J. Russell et al., “Algorithms for inverse reinforcement
learning,” in ICML, 2000, pp. 663–670.

[4] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforce-
ment learning,” in Proceedings of the 21th International Conference
on Machine learning. ACM, 2004, p. 1.

[5] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich, “Maximum margin
planning,” in Proceedings of the 23rd International Conference on
Machine Learning. ACM, 2006, pp. 729–736.

[6] E. Klein, M. Geist, B. Piot, and O. Pietquin, “Inverse reinforcement
learning through structured classification,” in Advances in Neural
Information Processing Systems, 2012, pp. 1007–1015.

[7] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning,” in AAAI, 2008, pp. 1433–
1438.

[8] A. Boularias, J. Kober, and J. Peters, “Relative entropy inverse re-
inforcement learning,” in Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, 2011, pp. 182–189.

[9] E. T. Jaynes, “Information theory and statistical mechanics,” Physical
Review, vol. 106, no. 4, p. 620, 1957.

[10] M. Babes, V. Marivate, K. Subramanian, and M. L. Littman, “Ap-
prenticeship learning about multiple intentions,” in Proceedings of the
28th International Conference on Machine Learning (ICML), 2011,
pp. 897–904.

[11] M. Kuderer, S. Gulati, and W. Burgard, “Learning driving styles for
autonomous vehicles from demonstration,” in 2015 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2015, pp.
2641–2646.

[12] M. Wulfmeier, P. Ondruska, and I. Posner, “Maximum entropy deep
inverse reinforcement learning,” arXiv preprint arXiv:1507.04888,
2015.

[13] J. Duan, S. E. Li, B. Cheng, Y. Luo, and K. Li, “Hierarchical
reinforcement learning for decision making of self-driving cars without
reliance on labeled driving data,” in the 14th International Symposium
on Advanced Vehicle Control (AVEC), Beijing, 2018.

[14] M. Kuderer, H. Kretzschmar, C. Sprunk, and W. Burgard, “Feature-
based prediction of trajectories for socially compliant navigation.” in
Robotics: science and systems, 2012.

[15] L. Xin, P. Wang, C.-Y. Chan, J. Chen, S. E. Li, and B. Cheng,
“Intention-aware long horizon trajectory prediction of surrounding
vehicles using dual lstm networks,” in 2018 21st International Con-
ference on Intelligent Transportation Systems (ITSC). IEEE, 2018,
pp. 1441–1446.

[16] P. Wang, T. Shi, C. Zou, L. Xin, and C.-Y. Chan, “A data driven
method of feedforward compensator optimization for autonomous
vehicle control,” arXiv preprint arXiv:1906.02277, 2019.

[17] S. Li, J. Wang, K. Li, X. Lian, H. Ukawa, and D. Bai, “Modeling and
verification of heavy-duty truck drivers car-following characteristics,”
International journal of automotive technology, vol. 11, no. 1, pp.
81–87, 2010.

[18] S. E. Li, C. Liu, Y. Zheng, J. Duan, and L. Keqiang, “Distributed
sensing, learning, and control for connected and automated vehicles,”
Science (Special Supplement), pp. 42–44, 2018.

2764

Authorized licensed use limited to: Tsinghua University. Downloaded on December 02,2020 at 06:19:06 UTC from IEEE Xplore. Restrictions apply.

