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Abstract— Detection of driver cognitive distraction is critical 

for active safety systems of road vehicles. Compared with visual 

distraction, cognitive distraction is more challenging for 

detection due to the lack of apparent exterior features. This 

paper presents a novel real-time detection algorithm for driver 

cognitive distraction by using support vector machine (SVM). 

Data are collected from 26 subjects, driving in typical urban and 

highway scenarios in a simulator. The chosen urban scenario is 

the stop-controlled intersection and the highway scenario is the 

speed-limited highway. Driver cognitive distraction while 

driving is induced by clock tasks which compete with the main 

driving tasks for visuospatial short working memory. For each 

subject, distracted driving instances and the equal number of 

non-distracted driving instances were collected (24 for urban 

scenario and 20 for highway scenario in total). Features 

concerning both driving performance and eye movement are 

used for training and validation. The proposed algorithm have 

correct rate of 93.0% and 98.5% for highway and urban 

scenarios respectively. Results also show that driver distraction 

can be recognized 6.5 s to 9.0 s after its happening, indicating 

good performance of the detection algorithm.  

 
Index Terms—Road vehicle, active safety, cognitive distraction, 

support vector machine (SVM) 

 

I. INTRODUCTION 

Driver distraction is a major cause of road traffic accidents, 

which has become a growing public safety hazard [1]. Up to 

25% of crashes involved driver distraction in some extent 

according to the police reported accident data [2]. Suggested 

by a study based on a survey of 1367 drivers, 14% to 33% of 

all serious crashes may be attributed to driver distraction [3]. 

Driver distraction occurs when a driver’s attention is diverted 

away from driving by a secondary task that is not related to the 

driving task [4]. Driving is a complex task, requiring the 

concurrent execution of various cognitive, physical, sensory 

and psychomotor skills [5]. Driver distraction competes for 

driver attention paid on the driving task; it potentially causes 

decrease on driver awareness to critical information for safe 

driving which makes them prone to cause severe car accidents. 
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Cognitive secondary tasks, such as talking through a 

hand-free cellphone, reading auditory e-mails, being lost in 

thought may happen during driving and would competes for 

cognitive resources with main tasks. Proper distraction like 

simple conversation can mitigate driving boredom and fatigue. 

However, driving safety will be threatened when cognitive 

workload is too high or driving environment changes 

dramatically. Even though significantly delaying drivers’ 

response to unexpected incidents, cognitive distraction 

happens inside brain without apparent exterior features [6]. 

Therefore, compared with visual distraction, cognitive 

distraction is more challenging to be detected. 

According to the traffic data in the US, distraction-related 

crashes happened in urban environment are increasing, which 

increases from 32.7% to 39.8% from 1999 to 2008 [1]. The 

cognition workload level changes with the driving scenarios. 

Urban scenarios with high traffic density, e.g., stop-controlled 

intersections, require higher cognition workload than such 

speed limited highway scenarios with low traffic density [7]. 

Increased roadway complexity compounds the decrement in 

performance caused by concurrent cognitive tasks [8]. 

Compared with abiding by varying speed limit signs, 

approaching a stop-controlled intersection demands higher 

cognitive workload. Moreover, the basic cognitive workload 

difference between those two scenarios may lead to different 

detection performance. 

The detection of driver distraction is a question of driver 

attention status classification. The widely used features 

include driving performance and eye movement. It is 

indicated by our previous study that the fusion of driving 

performance and eye movement is promising for the cognitive 

distraction detection and we have extracted the most 

important features from a huge amount of candidate features 

for the cognitive distraction detection [9]. Driver cognition 

can hardly be presented by a linear model, and hence, 

nonlinear modeling techniques are adopted in the cognitive 

distraction detection [10]. Following distance and steering 

angle as the classifier inputs, Farid et al. [11] constructed a 

real-time model, using Hidden Markov Models (HMMs) with 

Gaussian mixtures. Torkkola et al. [12] have employed 

random forest (RF) to construct classifier (with accuracy of 

80%) with steering angle, accelerator pedal position, lane 

boundaries and upcoming road curvature as inputs. Liang et al. 

[13] have applied fixation, saccade, smoothing pursuit of the 

eye, steering-wheel angle, lane position, and steering error as 
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inputs to real-time Support Vector Machine (SVM) classifiers 

to detect the driver cognitive distraction caused by interacting 

with in-vehicle information systems (IVISs). Their SVM 

classifier reached the average accuracy of 81.1%.  

The SVM model is applied in this study as the core 

component of proposed algorithm for real-time cognitive 

distraction detection. SVMs are insensitive to the curse of 

dimensionality and are efficient to handle large-scale 

problems [14]. It can avoid over-fitting by minimizing the 

upper bound of the generalization error to produce more 

robust models than traditional ones [15]. To avoid over 

repetition during data collection, the number of collected 

events for each participant is highly restricted which leads to 

small sample size. Data over-fitting arises due to large number 

of features compounding with comparatively small number of 

training instances.  

This paper presents a novel algorithm for the real-time 

detection of driver cognitive distraction happened at 

stop-controlled intersections and speed-limited highway. The 

classification accuracy, detection rapidity and optimal 

parameters of the proposed algorithm are compared between 

two driving scenarios. A driving simulator was used for the 

data collection under two typical driving scenarios, in which 

the clock task was selected to generate cognitive distraction. 

The cognitive distraction here is defined as driving with 

concurrent clock task while the non-distraction is defined as 

normal driving without secondary task. The proposed 

algorithm is trained and cross validated by using that collected 

data.  

The proposed algorithm consists of three main components; 

feature vector calculation, SVM classification and filtering 

recognizer. The moving window size is tested shorter than 

previous studies to make sure higher detection rapidity. 

Moreover, a consistency tester is designed to eliminate the 

result of “recognizing correctly by accident” from the 

performance of proposed algorithm. The results show that the 

proposed algorithm performs well in the two driving scenarios 

for both detection accuracy and rapidity. 

The main contributions of this paper include: (1) An novel 

algorithm is proposed for real-time detection of driver 

cognitive distraction, from the system architecture to the 

parameter optimization; (2) The correct rate and the detection 

rapidity are both considered as the performance indicators to 

optimize the algorithm parameters; (3) The average 

performance of proposed algorithm is better than the previous 

related studies indicatively in correct rate. The detection 

rapidity in the proposed algorithm is tested across different 

typical driving scenarios, yielding similarly good results. 

The rest of this paper is structured as follows: section II 

describes the data collection; section III presents the proposed 

algorithm; section IV shows the main results, followed by a 

discussion in section V. Section VI concludes this paper. 

II. DESCRIPTION OF DATA COLLECTION 

A. Subjects 

Twenty-six drivers (16 male and 10 female) aged from 20 
to 53 with normal or corrected to normal vision participated in 
the experiment among which 11 of them were involved in the 
scenario of stop-controlled intersections and 15 of them were 
asked to drive in the scenario of speed limited highway. Each 
groups contained participants of different genders and ages as 
shown in TABLE I. 

TABLE I.  SUBJECT NUMBER 

Scenario 
Number in types 

Male Female Age (year) 

Urban 7 4 
20~35 (mean = 24.5, SD  = 4.4) 

46~53 (mean = 49.7, SD  = 1.8) 

Highway 9 6 
20~30 (mean = 24.1, SD = 3.7) 

46~53 (mean = 49.8, SD = 2.0) 

 

B. Apparatus 

The motion-based driving simulator used in this study was 
composed by a visual simulation unit, an audio simulation unit 
and a motion simulation unit [16]. Location of vehicles and 
driving behaviors data (speed, acceleration/deceleration, 
steering angle, etc.) were automatically recorded. Smart Eye 
Pro 5.8 was used to collect eye movement data. The 
eye-tracker consists of three video cameras that located on the 
dashboard on either side of steer wheel and above it on the 
center. The cognitive secondary tasks were realized by an 
in-vehicle tablet speaker and they were automatically 
triggered by the serial communication between the tablet and 
the control computer of driving simulator. All the data were 
logged at 60Hz during the experiment. 

C. Driving scenarios 

1) Urban driving- Stop-controlled intersection 

The subjects involved in the scenario of stop-controlled 

intersection were instructed to drive along a straight, flat and 

non-priority road as shown in Fig. 1. There were four vehicles 

driving at 40 km/h on the crossed priority road. To reduce the 

learning effect of subjects, the time headway between each 

two vehicles on the priority road randomly changed from 1 s 

to 3 s. The appearance of these four vehicles was triggered by 

the location of the ego vehicle passing 60 m before the center 

of intersection. The covered distance, 130 m before to 30m 

after the center of the intersection, was extracted as one trial of 

intersection crossing. Each subject requires driving the 

experimental road map twice to encounter 24 intersections in 

total with distracted trial and non-distracted trial half-to-half. 

Subjects were told to keep their speed around 40 km/h 

between two intersections and follow traffic rules giving way 

to the vehicles on the priority road. 
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Figure 1.  Stop-controlled intersection.  

2) Highway driving – Speed limited highway 

The subjects involved in the scenario of speed-limited 

highway were asked to drive along the middle lane of a 

straight and flat road as shown in Fig. 2. The ego vehicle drove 

along the middle lane towards only one direction and lane 

changing was not permitted. These subjects were required to 

control the speed to comply with variable speed limits; the 

required minimum speed were 60 km/h, 70 km/h, 80 km/h and 

the required maximum speed was always 20 km/h higher than 

the minimum one. The process of crossing the speed limit sign 

was extracted from 300 m before to 150 m after the center of 

the sign. Each subject had to drive going through 20 of speed 

limit sign in total with distracted trial and non-distracted trial 

half-to-half. Subjects were instructed to comply with the speed 

range indicated by previously encountered speed limit sign 

and meanwhile drive as fast as they could. 

The target lane

 

Figure 2.  Speed limited highway (max – 90km/h, min – 70km/h).   

D. Cognitive secondary task 

Considering easy implementation, task repeatability, and 

measurability of workload level, the clock task, a kind of 

surrogate secondary task was adopted in this study [17]. It 

calls for the visualization of the clock hands and consumes 

visuospatial short working memory [18].  In the clock task, 

subjects listened to a series of three randomized clock times 

(1:00 – 12:59) with an interval of 5 s between two times. Upon 

hearing a clock time (e.g., 10:30), the subject should visualize 

the location of this time’s hour and minute hands on the face of 

an imaginary analog clock in mind and orally indicate whether 

the hands of the clock would form an acute angle as shown in 

Fig. 3. In each trial of the secondary task, subjects would be 

presented a prompt of the incoming task and have 2 s to get 

prepared [18]. It was required for all the involved subjects to 

try to provide accurate answer to each stimulus as quickly as 

possible. 

Visualization

Hear Think Speak

Stimulus

 8:00 

Acute 

angle?

 No 

 

Figure 3.  Illustration of the cognitive secondary task – clock task.   

E. Experiment Design 

For both driving scenarios, one within-subject factor, 

attention status, was applied, rendering a repeated measures 

design. Attention status has two levels; distracted driving 

concurrent with the clock task and non-distracted driving. To 

control learning effects, the presence order of attention status 

conditions was counterbalanced across repeated measures. 

For distracted driving, it was confirmed that the cognitively 

distracted status was realized during the whole event. Before 

data collection, training of the clock task and simulator 

driving was conducted to ensure subjects’ familiarity with all 

experimental procedures. For each subject, 12 distracted 

driving instances and 12 non-distracted driving instances were 

collected in the experiment of stop-controlled intersection 

scenario; while in the scenario of speed limited highway, 10 

distracted driving instances and 10 non-distracted driving 

instances were collected. 

III. ALGORITHM 

The architecture of the proposed algorithm is shown in Fig. 

4. The original signals include the steering angle (°, Str) and 

speed (km/h, V) from the driving simulator and the gaze 

location x (°, Gx), gaze location y (°, Gy), and head heading 

angle (rad, Hg) collected from the eye tracker. Considering the 
needs of detection rapidity and low dimension, some 
significant features were selected in the proposed algorithm 
under both driving scenarios based on our previous study [9]. 
The moving windows have the size of Tw (s) and the overlap 
rate of Op (%) every adjacent two of them. The feature vector 
calculation component transits observations in each moving 
window into a feature vector D including features of driving 
performance and eye movement. Each feature vector as the 
input, the SVM classifier generates an output for a preliminary 
classification of driver attention status (ds or dn). A series of 
preliminary classification results are pushed into a buffer with 
the size of Lb (s). The filtering recognizer generates the final 
classification result of the driver attention status based on each 
buffer (ds or dn). To better validate the proposed algorithm, a 
consistency tester is designed to eliminate the result of 
“recognizing correctly by accident” from the performance of 
proposed algorithm. 

A.  Selected Features 

The employed statistical functions to calculate features are 
shown in Table II. Extracted from five original signals used 
for cognitive distraction recognition, 35 statistical features are 
proposed to describe driver attention status. 

B. The SVM Classifier Component 

The classifier is individually constructed based on the half 
distracted driving instances and half non-distracted driving 
instances (24 in total for urban driving and 20 in total for 
highway driving). The feature data were normalized by 
min-max method mapping into the range of [-1, 1] within each 
subject [20]. Leave-one-out cross validation was applied to 
generate the reported values of classifier performance. The 
radial basis function (RBF) was adopted as the kernel function 
for the SVM models. The SVM classifier was trained and 
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tested via “LIBSVM” Matlab toolbox [21]. Correct rate (CR) 
is one indicator of the classifier performance; defined as the 
rate of instances correctly classified. F measure is the 
harmonic average of precision and recall which 
comprehensively reflects the performance of SVM classifier. 

Training data 

collection

Feature vector D(Tw, 
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Figure 4.  System architecture of proposed algorithm.   

C.  The Filtering Recognizer Component  

 The filtering recognizer generates the final classification 
result based on the data in the buffer with size of Lb. Once all 
the preliminary classification results in the buffer are the same 
(ds or dn), e.g. ds, the filtering recognizer delivers the final 
classification result as ds. If the preliminary results in the 
buffer have not reached the same attention status till the end of 
the event, the proposed algorithm fails in that case. 

During the process of parameter optimization, the test 
instance is marked as incorrectly classified when the final 
classification result is different from its label, namely the 
proposed algorithm fails. For those test instances with the 
same final classification result and annotated label, the 
consistency tester component is applied to further 
performance discussion (seen in Section III-D). 

D. The Consistency Tester Component 

 The whole process of driver cognitive distraction detection 
is completed after delivering the final classification result by 
the filtering recognizer.  

During the process of modeling and parameter optimization, 
to better validate the performance of proposed algorithm, the 
consistency tester keeps generating the classification result 
under the same rule of the filtering recognizer after the final 
classification delivered; the proposed algorithm fails if the 
consistency tester generates the classification result in contrast 
with the delivered driver attention status and passes if it 
generates the same result with the delivered one. The 
consistency tester detects the risk of “recognizing correctly by 
accident” therefore ensuring that the performance of proposed 
algorithm is validated comprehensively. 

TABLE II.  SELECTED FEATURES [9, 19] 

# Function 

Description 

Applied 

signals 
Meaning 

1 Mean Alla Mean of a signal 

2 Std Alla Standard deviation of a signal 

3 Cov V, Str Coefficient of variation 

4 Max V, Str Maximum value of a signal 

5 Amp V, Str Difference between the Max and Mean 

6 Rms V, Str Root mean square 

7 Q1 V, Str The 25th percentile 

8 Q2 V, Str The 50th percentile 

9 Q3 V, Str The 75th percentile 

10 MeanQ1 V, Str Mean of a signal below the 25th percentile 

11 MeanQ3 V, Str Mean of a signal above the 75th percentile 

12 NeuPerc Str Percentage of neutral steering (θ = 0 deg) 

13 LarTime Str Maximum large amplitude steering 

keeping time (  deg) 

14 LarPerc Str Percentage of large amplitude steering 

( deg) 

15 PeakFrq V, Str The frequency of peak value 

16 PeakAmpl V, Str Difference between the maximum and 

minimum value of the signal 

a.V, Str, Gx, Gy, Hg 

E. Algorithm Parameters and Performance Indicators 

Real-time algorithm design should consider the balance 
between the detection rapidity and correct rate. High rapidity 
with low correct rate tends to cause miss alarm; high correct 
rate without good performance on the detection rapidity also 
impairs the efficacy of algorithm. The real-time recognition of 
driver cognitive distraction should detect the change of driver 
attention status with high performance on both detection 
rapidity and correct rate. As for the indicator of detection 
rapidity, two time ranges are defined first. Time range one (Tr1) 
is defined as the time gap between the start time window of the 
event instance and delivering time window start of final 
classification result. Time range two (Tr2) is defined as the 
time gap between delivering time window end of final 
classification result and the end timing of the event instance as 
shown in Fig. 5.  
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 (a) Speed limited highway                                                                     (b) Stop-controlled intersection 

Figure 6. Algorithm performance of different parameters (25% - 75%, 3-order polynomial smoothing).   
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Figure 5.  Illustration of detection rapidity pre-definition.   

As previously described, the system architecture of 
proposed algorithm has three parameters and three 
performance indicators as shown in TABLE III. High S 
indicates good performance on the detection rapidity. Liang et 
al. [13] have applied 5s to 40s as the length of moving window. 
To enhance the detection rapidity, shorter time window size 
(2s and 5s) was selected to test the performance of proposed 
algorithm in this study. 

TABLE III.  ALGORITHM PARAMETERS AND PERFORMANCE INDICATORS 

Type # Name Unit Abb. 
Test range / 

Meaning 

Algorithm 

parameters 

1 
Moving 

window size 
s Tw 2, 5 

2 Overlap rate  % Op 5, 25, 50, 75, 95 

3 Buffer size s Lb 3-12 

Performance 

indicators 

1 F measure - F 

Harmonic average 

of precision and 

recall 

2 Correct rate % CR 
Rate of instances 

correctly classified 

3 
Detection 

rapidity 
% S Tr2 / ( Tr1+Tr2) a 

a. S = 0 means that the algorithm fails 

IV. RESULTS 

The performance of proposed algorithm under two driving 
scenarios with different algorithm parameter combinations are 
shown in Fig. 6.  

A.  Optimal Algorithm Parameters 

 As shown in Figure 6, the performance of proposed 

algorithm changed with different values of Tw and Op for both 

scenarios. The combination of Tw = 5 s and Op = 75% yielded 

the best performance considering both detection rapidity and 

correct rate. 
The performance of proposed algorithm is highly 

influenced by the parameters as shown in TABLE IV. The 
interaction effect of Op and Tw strongly impacts on the 
performance of proposed algorithm. 

The proposed algorithm with optimal parameters have CR = 
93.0%  5.3% with S = 88.7%  3.9% for highway driving 

and CR = 98.5%  2.1% with S = 91.9%  2.8% for urban 

driving. There is no significant difference between those two 
driving scenarios on the optimal algorithm performance which 
indicates that the performance of proposed algorithm is 
reliable on both driving scenarios. 

TABLE IV.  IMPACTS OF ALGORITM PARAMETERS ON CR (ANOVA) 

Scenario 
Main effects Interaction effect 

Op Tw Op * Tw 

Highway 

driving 

F4,149 = 3.37 

p = 0.012** 

F1,149 = 5.10 

p = 0.025** 

F4,149 = 24.0 

p < 0.001** 

Urban 

driving 

F4,109 = 1.84 

p = 0.13 

F1,109 = 0.60 

p = 0.44 

F4,109= 4.38 

p = 0.003** 

**. The tests obtained significant difference at α = 0.05 

B.  Scenario Impacts on the Proposed Algorithm 

Performance 

The CR of urban driving is significantly higher than 
highway driving (p < 0.001, F1,259 = 20.53). The S value shows 
slight difference between two driving scenarios (p = 0.099, 
F1,259 = 2.74). As shown in TABLE IV, the performance of 
proposed algorithm is more sensitive to the changing of 
algorithm parameters in the speed limited highway than in the 
stop-controlled intersection.  

Seen from the scenario difference, the performance of 

proposed algorithm including detection rapidity and accuracy 

is better for stop-controlled intersections than speed limited 

highway. However, as for the algorithm with optimal 

combination of parameters, there is no significant difference 

between those two driving scenarios. 

V. DISCUSSIONS 

In this paper, a novel SVM-based real-time cognitive 

distraction detection algorithm with both driving performance 

and eye movement features as inputs is proposed and cross 

validated.  

The proposed algorithm performs well in both correct rate 

and detection rapidity, which is also adaptive to different 

driving scenarios. The length of moving window (Tw) and the 

overlap rate of each two of them (Op) are two parameters of 

the proposed algorithm. The optimal combination of these 

parameters, Tw = 5 s with Op = 75%, is determined by the best 

comprehensive performance of cognitive distraction detection 
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considering both correct rate and detection rapidity. The 

algorithm gets correct rates on average between 93.0% and 

98.5% while the detection rapidity (S) reaches 88.7% to 

91.9%. Being more specific, with 30s as the length of 

extracted event sample, the distracted status of the driver can 

be recognized 6.5s to 9.0s after the happening of cognitive 

distraction that indicates the good performance of detection 

rapidity. Liang et al. got 81.1% as the average accuracy of the 

SVM classifier [13]. The best case was above 98% in this 

study, which is comparable with the best case above 96% in 

the study of Tango et al. [14]. It is shown that the 

comprehensive performance of proposed algorithm is better 

than the previous related studies indicatively (considering 

different settings of collected data and system architecture).  

Seen from the varying tendency of algorithm performance 

along with increasing Op, there exists a trade-off relationship 

between detection rapidity and accuracy. When the overlap 

rate and the length of moving window are small, the 

preliminary classification results distribute sparsely in the 

time domain. It takes long time to have the same results in one 

buffer that impairs the detection rapidity. Along with the 

increasing of Op, for one specific event there will be more 

feature vectors included. It takes short time to reach the same 

classification result in one buffer. However, it is difficult to 

pass the consistency tester due to higher fluctuation in the 

preliminary classification result.  

The overall performance of proposed algorithm is better for 

the urban driving than the highway driving which can be 

explained by the driving environment complexity. Urban 

scenarios have high traffic density that impose higher 

cognitive workload on drivers. Therefore, cognitive 

distraction tends to cause obvious changes on the driving 

performance and eye movement in urban driving. These more 

obvious changes make the cognitive distraction easy to be 

detected compared with highway driving condition. This 

explanation is confirmed in our previous study on the feature 

extraction of cognitive distraction detection [9]. For the 

real-time detection of driver cognitive distraction, the fusion 

of driving context is important for achieving reasonable and 

good detection performance. 

VI. CONCLUSIONS 

A SVM-based real-time cognitive distraction detection 

algorithm using both driving performance and eye movement 

features is proposed and cross validated, from the system 

architecture to the parameter optimization. The following 

conclusions are obtained: 

(1) With optimal parameters combination, the algorithm 

achieves correct rate between 93.0% and 98.5% on average. 

The detection rapidity reaches 88.7% to 91.9% namely the 

distracted status can be recognized in 6.5s to 9.0s after it 

happens.  

(2) The proposed algorithm is tested across different typical 

driving scenarios, yielding similarly good results. 

Our future study will focus on building an improved driver 

distraction recognition method with online normalization, 

dynamic moving window and smaller size of selected features. 

To further assess the generality and functionalities required in 

active safety systems, naturalistic driving data will be 

collected for the construction of improved algorithm. 
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