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ABSTRACT
This paper proposes a linear predictive lateral control method to sta-
bilise a highly automated vehicle (HAV) at the tire-road friction limits
when tracking a (tight) desired path. Two approaches are adopted to
linearise the vehicle model around the tire saturation region: (1) the
lateral force of the front tire is selected as the control input instead
of the steer angle and (2) the rear tire dynamics is locally linearised
at the current operating point within the predictive horizon. The fric-
tion limits of both the front and rear tires are utilised to define an
enveloped stable zone, which serves as the safety constraints for the
predictive controller. Simulation results show that the proposed con-
troller is able to stabilise a vehicle when tracking a tight desired path
at a high speed even on a low-adhesion road. Moreover, the robust-
ness of the proposed controller is also verified as it tolerates small
estimation errors in the road friction coefficient.
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1. Introduction

Road vehicles have the potential to lose lateral stability when performing extrememanoeu-
vres, such as emergency obstacle avoidance, high-speed turning and driving on low-
adhesion roads. Under these conditions, the lateral tire forces may reach the friction limits
and become saturated, which is the leading cause of vehicle instability [1,2]. Such tire non-
linearitiesmake the path tracking in extreme situations a difficult task for highly automated
vehicles (HAVs).

To prevent vehicle instability in extreme path-tracking tasks, the first question to be
answered is how to assess vehicle stability based on the observed vehicle state. The phase
portrait method is commonly used to analyse vehicle stability by plotting a cluster of state
trajectories from different initial conditions. Two types of phase planes have been adopted
in previous studies: (1) sideslip angle at the centre of gravity (CG) β with its rate β̇ , i.e.
β − β̇ [3] and (2) sideslip angle β with yaw rate r, i.e. β − r [4,5]. Inagaki et al. [3] experi-
mentally depicted the state trajectories of different steady-state cornering conditions in the
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β − β̇ phase plane, and roughly determined the bounds of the stable zone through empir-
ical analysis. With the development of on-board gyro technology, yaw rate r has become a
measurable state formany commercialised vehicles, which arouses an increasing interest to
analyse vehicle stability using the β − r phase portrait. Ono et al. [4] revealed that vehicle
instability is inherently caused by the state trajectory bifurcation around the saddle points
in the β − r phase plane, and pointed out that the saddle points emerge from the satura-
tion of lateral tire forces. The stable and unstable zones can be hence identified based on
the location of the saddle points. On the basis of Ono’s finding, Gerdes and his leagues [2]
defined a parallelogram-shaped stable zone in the β − r phase plane, of which the upper
and lower bounds are determined by the maximum yaw rate under the current tire-road
friction limits, and the left and right bounds come from the constraint that the rear wheel
slip angle stays within the non-saturation region. It has been demonstrated in [2] that this
stable zone can stabilise a vehicle at the limits of handling. However, it has been found in
[2] that there is a small overshoot in the yaw rate before the vehicle reaches the equilib-
rium state during steady-state cornering. Taking this into account, Gerdes et al. [5] further
expanded the stable zone by combining the maximum and minimum real slip angles with
the yaw acceleration nullclines determined by the maximum stable steering angle, which
admits the yaw rate overshoot instability control.

After the stable zone is determined, the second question to be addressed is how to apply
lateral control to confine the vehicle state within the stable zone when tracking a desired
path. Model predictive control (MPC) is a popular approach to achieve such a goal [6],
because it can explicitly handle constraints and optimise the path-tracking performance
simultaneously [7]. Borrelli et al. [8] designed a predictive lateral controller using the Pace-
jka tire model to realise accurate path tracking. In this study, the vehicle stability is ensured
by imposing a constraint on the front/rear tire slip angles. However, the introduction of
the nonlinear tire model into the prediction equation results in a nonlinear model predic-
tive control (NMPC) problem, which is inefficient to solve and thus difficult for real-time
implementation. Yoon et al. [9] followed the nonlinear path-tracking method, but incor-
porated the online obstacle information into the model prediction process. To alleviate
the computational burden caused by model nonlinearity, Falcone et al. [10] converted the
nonlinear MPC to a linear time-varying problem by successively linearising the nonlin-
ear vehicle model around a reference system trajectory. Although it manages to reduce the
computational complexity to some extent, it requires to evaluate the Jacobians of the non-
linear vehicle model along the reference trajectory points within the predictive horizon,
which is also time-consuming. Khajepour et al. [11] used a simplified linear bicycle model
for MPC-based path tracking by assuming small tire slip angles. The state constraints on
the yaw rate and sideslip angle were enforced to stabilise the vehicle for high-speed obstacle
avoidance. However, this method cannot compensate for the tire nonlinearity if the vehicle
encounters extreme situations in which the operating point of the tires are likely to move
away from the linear region.

The main contribution of this paper is a linear predictive control method to stabilise
HAVs at the handling limits when tracking a desired path. We mainly consider extreme
situationswhere braking is not allowed (for example, a car on the adjacent lane is approach-
ing fast behind when the ego vehicle is trying to avoid an emergency ahead; or the road
surface has very low adhesionwhere brakingmay lock the wheels). This enables us to focus
on the design of a lateral controller regardless of speed regulation. Unlike many previous
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studies, e.g. [8,10,12], the lateral force of the front tire is selected as the control input to
avoid model nonlinearity when the tires are working around the tire-road friction limits.
After the optimal lateral force of the front tire is obtained, the steer angle input is recovered
by numerically solving an inverse tire model. The friction limits of both the front and rear
tires are used to define the enveloped zone for the yaw rate and sideslip angle, which are
then enforced as the safety constraints in the predictive horizon.

The rest of this paper is organised as follows: Section 2 presents the vehiclemodel includ-
ing a nonlinear tire model to be used throughout the paper. Section 3 analyses the vehicle
lateral stability using the phase portrait method. Section 4 presents the predictive control
method to track a desired path at the friction limits. Section 5 demonstrates the perfor-
mance and robustness of the proposed control method by simulation. Section 6 concludes
the paper.

2. Vehicle dynamics

2.1. Nonlinear vehicle lateral model

A single-track bicycle model [13] is used to describe the lateral dynamics of a vehicle, as
shown in Figure 1. The bicyclemodel is derived by assuming: (1) the forces on left and right
wheels are lumped together considering symmetry; (2) the longitudinal speed is assumed
to be constant, and the pitch and roll motion are neglected; (3) the vehicle is rear-wheel
drive, and the front wheels only serve as the steering wheels.

The dynamics of the single-track bicycle model are

mν(β̇ + r) = Fyf + Fyr
Izzṙ = aFyf − bFyr, (1)

where m is the vehicle mass, v is the longitudinal speed, Izz is the moment of inertia, a and
b are the distances of front and rear axle from CG, respectively, r is the yaw rate at CG, β is
the vehicle sideslip angle at CG, Fyf and Fyr are the lateral tire forces of the front and rear
tires, respectively.

Figure 1. Single-track bicycle model.
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To perform path tracking at the tire-road friction limits, a high-fidelity tire model is
essential to provide accurate prediction of the tire behaviour. The Fiala tire model [2] is
used here to approximate the relation between the lateral tire force and the tire slip angle:

Fy# = Tire(α#,μ#) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−C#tanα#
(
C#

2(tanα#)2

27(μ#Fz#)2
− C#|tanα#|

3μ#Fz#
+ 1

)

−μ#Fz#sgn(α#)
|α#| ≤ αmax,#

|α#| > αmax,#

(2)

where C# is the tire cornering stiffness, α# is the tire slip angle, Fz# is the tire load,μ# is the
lateral friction coefficient, and the subscript # ∈ {f , r} represents the front or rear tires.

The slip angles of the front and rear tires can be approximated from the geometric
relationship between the front/rear axle and the CG:

αr = β − br
ν

(3)

αf = β + ar
ν

− δ, (4)

where δ is the steer angle of the front wheel. The load transfer may occur when the vehicle
is turning, thus changing the load distribution in the lateral direction. Here, we neglect the
load transfer between the left and right wheels. Therefore, the loads on the front and rear
tires are constant and calculated by

Fzf = b
2(a + b)

mg (5)

Fzr = a
2(a + b)

mg, (6)

where Fzf is the load of the front tire, and Fzr is the load of the rear tire, g is acceleration
of gravity. We have assumed a rear-wheel-drive vehicle model, therefore its longitudinal
traction force would occupy a part of the tire capability and the magnitude of the lateral
friction limit of the rear wheel is slightly smaller than that of the front. Therefore, we should
exclude the effect of the longitudinal tire force when calculating the lateral friction coeffi-
cientμ#. For the frontwheel, its lateral friction coefficientμf equals to the tire-road friction
coefficient μ (we assume that the rolling resistance force is negligible). The lateral friction
coefficient of the rear wheel μr is corrected by eliminating the longitudinal traction force
[14]:

μr =
√
(μFzr)2 − Fxr2

Fzr
, (7)

where Fxr is the longitudinal traction force of the rear tire. The notation αmax,# represents
the tire slip angle when the tire fully-sliding behaviour occurs, approximated by

αmax,# = 3μ#Fz#
C#

. (8)

Themaximumavailable lateral forces of the front and rear tires are the product of the lateral
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Table 1. Parameters of vehicle model.

Parameter Symbol Value

Vehicle mass m 1330 (kg)
Yawmoment of inertia Izz 1536 (kg/m2)
Wheel base L 2.91 (m)
Distance frommass centre to Front axle a 1.015 (m)
Distance frommass centre to rear axle b 1.895 (m)
Front wheel cornering stiffness Cf 72,197 (N/rad)
Rear wheel cornering stiffness Cr 39,930 (N/rad)

friction coefficient and the vertical tire load:

Fyf ,max = μf Fzf
Fyr,max = μrFzr (9)

The related vehicle model parameters used for this paper are listed in Table 1.

3. Vehicle stability analysis

The vehicle state may enter some inherent unstable zones during turning if the tire lateral
forces are saturated. Therefore, we first identify the bounds of the vehicle stable zone by
open-loop analysis, which could serve as the constraints on the vehicle state for us to design
a stabilising predictive controller in the next section.

3.1. State trajectories under steady-state cornering conditions

We analyse the vehicle instability by using the β − r phase portrait under the steady-
state cornering conditions. The phase portrait is based on the single-track bicycle model
assuming a constant longitudinal speed and a fixed steer angle:

β̇ = Fyf + Fyr
mν

− r (10a)

ṙ = aFyf − bFyr
Izz

(10b)

Fyf = Tire(β , r,μf ) (10c)

Fyr = Tire(β , r,μr). (10d)

Equations (10c) and (10d) are obtained by substituting (1) and (2) into (2). Figure 2 shows
the phase portraits plotted at the steering angle δ = 0◦, −3°, −8°, −12°, the constant
speed v = 10 m/s and the tire-road coefficient μ = 0.55 from different initial conditions.
In Figure 2(a), the stable equilibrium is marked by a red dot in the middle of the phase
plane. There is a domain of attraction around the stable equilibrium, and all the trajec-
tories starting within it will converge to the equilibrium even under certain disturbances.
The two equilibria marked by a red triangle are unstable saddle points where bifurcation
occurs and four unstable zones are formed. In the unstable zone 1© and 4©, vehicle insta-
bility is caused by large yaw rate; whereas in the unstable zone 2© and 3©, the instability is
caused by a joint effect of a large sideslip angle and the yaw motion.
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Figure 2. Phase plane representations of vehicle dynamics.

If the steer angle is increased to −3°, the stable equilibrium moves towards a larger
(negative) sideslip angle and yaw rate, as shown in Figure 2(b); if the steer angle is increased
to −8°, the stable equilibrium gets much closer to the saddle point (shown in Figure 2(c)),
and any lateral disturbance to the vehicle would lead to instability; if the steer angle reaches
−12°, the stable equilibrium disappears and the unstable zones are expanded to the whole
phase plane, as shown in Figure 2(d). Note that the upper (lower) saddle points lie on a
horizontal line (denoted by a red dash-dot line) at any steer angles. This property will be
proved in the following section and can be used to constitute a stable zone.

3.2. Analysis of vehicle equilibrium state

Here we calculate the vehicle state, including the vehicle sideslip angle, yaw rate, lateral
forces of the front and rear tires, at the equilibrium with given constant vehicle speed and
tire-road coefficient. The equilibrium state is derived by setting β̇ = 0 and ṙ = 0 in the
dynamic bicycle model:

mvreq = Feqyf + Feqyr (11a)

aFeqyf − bFeqyr = 0 (11b)
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Feqyf = Tire(βeq, req,μf ) (11c)

Feqyr = Tire(βeq, req,μr), (11d)

where the superscript ‘eq’ represents ‘equilibrium’. Feqyf and Feqyr are functions of βeq and
req. Because there are four variables and four equations, we can solve the equilibrium state
using the vehicle speed, tire-road coefficient, and steer angle.

We plot the vehicle equilibrium state with respect to the steer angle at v =10m/s
and μ = 0.5 as shown in Figure 3, by setting β̇ = 0 and ṙ = 0 in the dynamic bicycle
model. There are two kinds of equilibria: the first kind of equilibria is marked by red
dots in Figure 3. At these equilibria, βeq slowly increases with a larger steer angle δ (see
Figure 3(a)), and the yaw rate increases accordingly (see Figure 3(b)). Furthermore, the
lateral forces of the front and rear tires are not saturated at these equilibria because they do
not exceed the tire friction limits (denoted by the blue dashed lines), as shown in Figure 3(c)
and Figure 3(d). Hence, we can conclude that these equilibria correspond to the steady state
of normal cornering conditions.

Similarly, let us discuss the properties of the second kind of equilibria that are marked
by red triangles (saddle points). From Figure 3(d), we can see that Feqyr is saturated and
hence constant at these equilibria and Feqyf is nearly saturated and also constant because it
is proportional to Feqyr according to (11b). If the steer angle increases, βeq would increase
dramatically, and there is counter steer as req and the steer angle have opposite signs. In

Figure 3. Equilibria analysis of the bicycle model.
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this situation, the rear tire gets saturated first as μr < μf and has a slightly small friction
limit. Therefore, the friction limit of the rear tire decides the maximum driving capability
that a vehicle can achieve.

3.3. Bounds for vehicle stable zone

Now let us show that the upper (lower) saddle points lie on a horizontal line. This state-
ment can be simply proved by showing that req is constant for the upper (lower) unstable
equilibria. According to Section 3.2, Feqyf and F

eq
yr are constant at these equilibria because the

rear tire is saturated. Therefore, from (9a) we know that req is also constant. This constant
req can be seen as the maximum allowed yaw rate rmax, calculated by setting Feqyr = μrFzr
in Equation (11a):

rmax = μrFzr + bμrFzr/a
mν

= μrg
ν

. (12)

Hence, the yaw rate at the CG should be constrained by

− μrg
ν

≤ r ≤ μrg
ν

. (13)

Besides the yaw rate, we should also restrict the vehicle sideslip angle because of the exis-
tence of the unstable zones 2© and 3© in the phase plane (see Figure 2). This can be achieved
by restricting the slip angle of rear tire between their peak values:

− αmax,r ≤ αr ≤ αmax,r. (14)

Substituting (1) into (11), we have

− αmax,r ≤ β − br
ν

≤ αmax,r. (15)

Rearranging (13), we have the constraint:

br
ν

− αmax,r ≤ β ≤ br
ν

+ αmax,r. (16)

Finally, we construct the stable zone by constraints (11) and (14) in the β − r phase plane.
The stable zone should be updated in real time because its bounds vary with the vehicle
speed and the tire-road friction coefficient. More specifically, the upper and lower bounds
are proportional to μ/v according to (10). The locations of the left and right bounds are
influenced by the tire-road coefficient according to (14). A smaller tire-road coefficient and
higher vehicle speed would shrink the stable zone and make the vehicle prone to instabil-
ity. This stable zone can be taken as the safety envelope of the predictive path-tracking
controller.

4. Controller design

This section designs a predictive lateral controller for accurate path tracking at the tire-road
friction limits. It is assumed that an upper-level path planner would generate a desired path
according to the road environment. At each control step, an open-loop optimal control
problem is formulated subject to a linearised vehicle model and the safety envelope.
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4.1. Model linearisation for controller design

To linearise the vehicle model given in Section 2, we must cope with the nonlinearity orig-
inated from the lateral tire forces Fyf and Fyr. For the lateral force of the front tire Fyf , we
can directly assign it as the control input [2], because it can be controlled by solving the
desired steer angle input δdes from the tire model (2) and Equation (2) given the on-board
measurement of sideslip angleβ , yaw rate r, longitudinal speed ν, and the estimatedμ. This
partition approach can preserve the nonlinearity of the front tire and admit a linear rela-
tion between the input and state in the vehicle dynamics. However, the lateral force of the
rear tire Fyr cannot be treated in the same way because it is not directly controllable. There-
fore, we have to linearise Fyr locally at the current operating point and substitute it into the
prediction model. This local linearisation is based on the first-order Taylor expansion of
the nonlinear tire model Fyr = Tire(αr,μr) around the current rear slip angle:

Fyr ≈ F̄yr − C̃r,ᾱr(αr − ᾱr), (17)

where ᾱr is the current rear slip angle, F̄yr = Tire(ᾱr,μr) is the current lateral force of the
rear tire, and C̃r,ᾱr = ∂Tire(αr,μr)/∂αr|αr=ᾱr is the local cornering stiffness After such
manipulations on Fyf and Fyr, the vehicle dynamics can be described by

β̇ = Fyf + F̄yr − C̃r,ᾱr(αr − ᾱr)

mν
− r

ṙ = aFyf − b(F̄yr − C̃r,ᾱr(αr − ᾱr)

Izz
. (18)

Substituting (1) into (16) yields

β̇ =
Fyf + F̄yr − C̃r,ᾱr

(
β − br

ν
− ᾱr

)
mν

− r

ṙ =
aFyf − b(F̄yr − C̃r,ᾱr

(
β − br

ν
− ᾱr

)
Izz

. (19)

Therefore, a local linear time-invariant model is obtained as

ẋ(t) = Ax(t)+ Bu(t)+ d(t)

z(t) = Cx(t), (20)

where x(t) = [y(t),ψ(t),β(t), r(t)]T and

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 v v 0
0 0 0 1

0 0
−C̃r,ᾱr
mν

bC̃r,ᾱr
mν2

− 1

0 0
bC̃r,ᾱr
Izz

−b2C̃r,ᾱr
νIzz

⎤
⎥⎥⎥⎥⎥⎥⎦
,B =

⎡
⎢⎢⎢⎢⎢⎣

0
0
1
mv
a
Izz

⎤
⎥⎥⎥⎥⎥⎦
,
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d(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0

F̄yr + C̃r,ᾱr ᾱr

mv
−b(F̄yr + C̃r,ᾱr ᾱr)

Izz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,C =

[
1 0 0 0
0 1 0 0

]
,

where y is the lateral displacement, ψ is the yaw angle, z = [y,ψ]T is the output for path
tracking. Here, we take the desired lateral force of front tire as the control input u = Fyf ,des.
ThematricesA and B are constant, and d is a disturbance input associated with the current
vehicle state.

4.2. Formulation of lateral predictive controller

In automated driving applications, there is usually a local reference path for the motion
controller to track. Assuming that the reference path is known, we can construct the
following open-loop optimal control problem [15,16] for the stabilising MPC controller:

J =
∫ t+T

t
(‖ z(τ )− zref (τ ) ‖2Q + ‖ u(τ ) ‖2R +ρr · εr2 + ρα · εα2)dτ , (21)

subject to (18) and the safety envelope: (19a)

−Fyf ,max ≤ u(τ ) ≤ Fyf ,max (22a)[
0 0 1 −b/v
0 0 0 1

]
|x(τ )| ≤

[
rmax + εr
αmax,r + εα

]
(22b)

εr ≥ 0 (22c)

εα ≥ 0, (22d)

where t is the current control time, T is the prediction horizon, zref is the reference trajec-
tory extracted from the reference path considering the current vehicle position and speed,
u = Fyf ,des is the predicted control input, εα and εr are slack variables. The first term in
the cost function penalises the path-tracking error by a weighting matrixQ of dimension
2 × 2; the second term penalises themagnitude of control input by a weightingmatricR of
dimension 1 × 1 (a scalar); and the last two terms introduce penalty on the stable bounds
violation. Constraint (22a) represents the friction limit of the front tire, and constraint
(22b) confines the vehicle state into the stable zone that has been introduced in Section 3.

4.3. Reverse calculation of desired steer angle

The optimal control input from MPC is the desired lateral force of the front tire Fyf ,des,
which cannot be directly sent to the vehicle. Therefore, the desired steer angle δdes should
be recovered by an inverse tire model which is derived from the tire model (2). Then, δdes
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is obtained by combining the inverse tire model with (2) as

δdes = β + ar
ν

− Tire−1(Fyf ,des). (23)

Because (2) can be seen as a cubic polynomial with respect to tanαf , it is easy to first
find tanαf ,des using a standard cubic formula and then get αf ,des through the inverse tan-
gent function. There is a unique solution to (23) because the tire is operating in the
non-saturation region which is ensured by constraint (22a).

5. Simulation results and validation

Simulations are performed on a Simulink/CarSim. It should be noted that although the
MPC controller is derived under some simplifying assumptions, the CarSim vehicle model
is based on real-car dynamics, which could make the simulation results more convincing.
The MPC problem is numerically solved by using the YALMIP toolbox with the Gurobi
solver [17]. The MPC controller parameters for simulation are shown in Table 2.

5.1. Simulation setting

The CarSim built-in double lane change (DLC) and tight double lane change (TDLC) are
selected as the simulation scenarios to represent normal/emergent lane-change or obstacle-
avoidance manoeuvres, whose reference paths are shown in Figure 4(a) and Figure 6(a).
The simulations are conducted under four conditions, i.e. normal (v = 55 km/h,μ = 0.85,
DLC), tight (v = 55 km/h, μ = 0.85, TDLC), low road adhesion (v = 55 km/h, μ = 0.5,
DLC), and high speed (v =75 km/h, μ =0.85, DLC), to showcase the path-tracking per-
formance and stability of the designed MPC controller under different conditions. For
comparison, the CarSim built-in optimal preview controller (OPC) is used as the bench-
mark. TheOPC is based onMacAdam’swork [18]which is verymuch like a standard linear
MPC controller except that: (1) it employs a linear vehiclemodel that does not consider tire
nonlinearity at tire-road friction limits and (2) it does not impose any safety constraints on
the vehicle state to prevent instability.

5.2. Simulation results and analysis

Figure 4 shows the simulation results under the normal condition. The proposed MPC
controller shows a better tracking performance than the OPC controller, as shown in
Figure 4(a). Figure 4(b–d) give the steer angle profile, adhesion utilisation of the front and

Table 2. Predictive controller parameters.

Parameters Symbols Values

Predictive horizon N 50
Sampling time Ts 0.02 s
Tracking error penalising matrix Q [104 0; 0 103]
Input slew rate penalising matrix R 0.01
Slip angle overshoot penalising factor ρα 5 × 105
Yaw rate overshoot penalising factor ρr 5 × 105
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Figure 4. Normal condition (v = 55km/h,μ = 0.85, DLC).

rear tires (adhesion utilisation is defined as the ratio of actual lateral tire force to the maxi-
mum available lateral tire force), respectively. In Figure 4(c,d), the front and rear adhesion
utilisations being smaller than 1 means that both tires are not saturated. The β − r tra-
jectories are plotted in Figure 5, which shows that both controllers are enveloped in the
stable zone. This result demonstrates that under normal conditions the proposed MPC
controller outperforms the OPC controller slightly in the sense of a smaller path-tracking
error, but the stability margin (indicated by the distance from the vehicle state to the stable
zone boundaries) and riding comfort (indicated by steering angles and lateral forces) are
somewhat sacrificed. Thus, it is hard to say that the MPC controller shows any advantages
over OPC in normal driving conditions.

Figure 6 shows the simulation results under the tight condition. FromFigure 6(a) we can
see that the OPC tracks better initially, but eventually destabilises the vehicle. Figure 6(c,d)
demonstrates that under OPC both the front and rear tire reach the friction limits and
tire sliding occurs. Figure 7 shows that the β − r trajectory of the OPC escapes the sta-
ble zone eventually. Compared with the OPC, the proposed MPC controller can actively
restrict the tire slip angles and the vehicle state in advance, thereby preventing vehicle
instability. These properties are reflected in Figures 6(b–d) and 7. We can also find in
Figure 7 that the β − r trajectory of the MPC controller would temporarily cross the
lower bound. This is permitted by the slack variable εr but large deviation from the stable
bounds is penalised. Compared with normal conditions, the MPC controller would sacri-
fice path-tracking performance to maintain vehicle stability when tracking a tight desired
path.

Figures 8 and 9 present the simulation results under the low-adhesion condition. In
these situations, the proposed MPC controller also reveals a better tracking performance
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Figure 5. State trajectories under the normal condition.

Figure 6. High-speed condition (v = 55 km/h, μ = 0.85, TDLC).

than the OPC controller. The lateral forces of the front and rear tires are within friction
limits under both controllers (shown in Figure 8(c,d)). The vehicle state trajectories are
shown in Figure 9 and certainly are enveloped into a stable region. Compared with the
normal condition, a slightly poor tracking performance is presented, however, the bounds
of the stable region have changed dramatically in which case lower adhesion shrink the
lower and upper bounds of the stable region, indicated by Equation (11). Thus, a stronger
constraint on yaw rate during steering are presented in theMPC-based path tracking prob-
lem and the solved steer angle is smaller than the normal condition to satisfy the yaw rate
constraints, shown in Figure 8(b).
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Figure 7. State trajectories for the tight condition.

Figure 8. Low-adhesion condition (v = 55 km/h, μ = 0.5, DLC).

Figures 10 and 11 present the simulation results under the high-speed condition. Under
the high-speed condition, theMPC controller shows a smaller tracking error than theOPC
controller and the adhesion utilisation is smaller than 1. Vehicle states are still confined to
a stable region. Compared with the normal condition, the tracking performance is worse
than the normal condition. The bounds of the stable region also changed, in which case
high speed shrink both the four bounds of the stable region, indicated by Equations (11)
and (14). The solved steer angle is also smaller than the normal condition to satisfy the
constraints of yaw rate and rear tire slip angle, shown in Figure 10(b).

Figure 12 illustrates the maximum tracking error of the proposed MPC controller out-
put by simulation under different road friction coefficient, vehicle speed and desired path
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Figure 9. State trajectories for the low-adhesion condition.

Figure 10. High-speed condition (v = 75 km/h, μ = 0.85, DLC).

type (DLC/TDLC). Under the DLC reference path, the tracking performance goes down
slowly when the road friction coefficient μ decreases from 0.8 to 0.4 but worsens rapidly
once μ is below 0.4. This indicates that the proposed MPC controller is insensitive to road
friction coefficient in normal lane change manoeuvres unless beyond normal range (μ <
0.4). In terms of vehicle speed, it is shown in Figure 12 that the path-tracking error of the
proposedMPCwould increase as the vehicle speed goes up from 40 to 70 km/h assuming a
constant road friction coefficient μ. Compared with the DLC path, the TDLC path would
produce relatively larger tracking error under the same configuration. This implies that the
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Figure 11. State trajectories for the high-speed condition.

Figure 12. Tracking error under different conditions.

manoeuvrability of the reference path has a huge impact on the controller’s performance:
under circumstances that the environment constraints are tight, a good path-tracking con-
troller itself is not sufficient, we need to manipulate the reference path as well to pursue a
better performance.

To summarise, the proposed MPC path-tracking controller performs better under
middle-speed range and loose environment constraints. On top of that, the controller does
not appear to be influenced by the road friction coefficient μ if it is within normal range
(μ ≥ 0.4) in normal lane change manoeuvres. However, if the road constraints become
tight, the impact of μ on the controller’s performance would become significant.

Since tire-road friction coefficients are hard to estimate in real applications, we hereby
investigate the robustness of the proposed MPC controller in the presence of a friction
coefficient estimation error. Figure 13 shows themaximumpath-tracking error of theMPC
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Figure 13. Robustness under a friction coefficient estimation error.

controller under different estimate of μ (denoted by μ̂) when the true μ are 0.7 and 0.3,
respectively (the DLC scenario is used). When the true μ is 0.7, the maximum tracking
error can be restricted fairly under 0.4m when the estimated road friction limit μ̂ falls in
the range of 0.5–0.9. However, if μ̂ falls below 0.5, the tracking performance deteriorates
rapidly as μ̂ goes down. If the trueμ is 0.3, the tracking performance is averagelyworse than
the case of μ = 0.3. We can notice that in the low-road-adhesion situation the best path-
tracking performance is achieved when μ̂ equals and either overestimate or underestimate
of μ would undermine vehicle stability. From Figure 13, we can see that an unreasonable
underestimate ofμwould causemore severe result than overestimating it, nomatter where
the true μ lies.

In general, the proposedMPCpath-tracking controller shows robustness when the road
is normal (true μ is large) if the estimate μ̂ is not too far below the true μ. If the road is of
low adhesion, the controller’s robustness is impaired as either an overestimate or an under-
estimate would enlarge the maximum tracking error. The simulation result enlightens us
that in such a case an overestimate is more bearable than an underestimate. That is to say,
it should be avoided to estimate μ into an unreasonable region (<0.3) when we use the
proposed MPC controller.

6. Conclusion

This paper proposes a predictive lateral control method to stabilise anHAV at the tire-road
friction limitswhen following a desired path. The nonlinear saturation property of the front
tire is compensated for by an inversemodel, thus allowing to directly use the lateral force of
front tire as the control input. This design, together with linearised rear tire dynamics at the
current operating point, yields a linear open-loop optimal control problem. The friction
limits of both the front and rear tires are utilised to define the enveloped zone for vehicle
yaw rate and sideslip angle, which is then enforced as the safety constraints in the predictive
horizon. The simulation results demonstrate that: (1) under extreme conditions, the pro-
posed predictive controller is able to improve vehicle stability at the cost of a compromised
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tracking performance and (2) when working at different reference path configurations and
vehicle speed, the method is robust in the sense that it tolerates an estimation error in the
road friction coefficient μ. It should be noted that the electronic stability control (ESC) is
not considered in the study, because ESCworks in a different way to improve vehicle stabil-
ity by applying braking to individual wheels to adjust vehicle motion (mainly yaw rate γ ).
We would anticipate that the proposed MPC path-tracking controller can achieve better
stabilisation effect and path-tracking performance with the assistance of ESC under even
extremer conditions, and look forward to conducting related research in the future.
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