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A B S T R A C T

In a platoon of connected vehicles, time headway plays an important role in both traffic capacity
and road safety. It is desirable to maintain a lower time headway while satisfying string stability
in a platoon, since this leads to a higher traffic capacity and guarantees the disturbance at-
tenuation ability. In this paper, we study a multiple-predecessor following strategy to reduce time
headway via vehicle-to-vehicle (V2V) communication. We first introduce a new definition of
desired inter-vehicle distances based on the constant time headway (CTH) policy, which is sui-
table for general communication topologies. By exploiting lower-triangular structures in a time
headway matrix and an information topology matrix, we derive a set of necessary and sufficient
conditions on feedback gains for internal asymptotic stability. Further, by analyzing the stable
region of feedback gains, a necessary and sufficient condition on time headway is also obtained
for the string stability specification. It is proved that a platoon can be asymptotically stable and
string stable when the time headway is lower bounded. Moreover, this bound can be reduced by
increasing the number of predecessors. These results explicitly highlight the benefits of V2V
communication on reducing time headway for platooning of connected vehicles.

1. Introduction

The increase of car ownership has posed a high demand on road throughput as well as transport safety and efficiency. To mitigate
this issue, one promising approach is the cooperation of multiple connected vehicles using onboard sensors and vehicle-to-vehicle
(V2V) communication. As discussed in Talebpour and Mahmassani (2016), Xu et al. (2018), Lioris et al. (2017), the cooperation of
connected vehicles has the potential to greatly improve throughput and safety for both urban and highway traffic. In the one-
dimensional case, this cooperation technique is referred to as the cooperative adaptive cruise control (CACC) or vehicular platooning
(Shladover, 2007; Shladover et al., 1991). A review of recent advances in platoon control can be found in Li et al. (2017b).

In a vehicular platoon, multiple connected vehicles are coordinated to move in a one-dimensional formation. In this formation,
the most important properties include the internal stability and string stability. The internal stability indicates the ability to maintain
the formation asymptotically, which requires that all eigenvalues of the system characteristics polynomial are in the open left half
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plane. Different from this, the string stability represents the ability to attenuate the effects of disturbances along the platoon (Seiler
et al., 2004). In the literature, there are different types of definitions for string stability, such as the L2 (Ploeg et al., 2014a; Al-
Jhayyish and Schmidt, 2018), Lp (Ploeg et al., 2014b), L (Stüdli et al., 2017), and head-to-tail string stability (Ge and Orosz, 2014,
2018; Wang, 2018). It is known that the string stability is highly influenced by the range policy, i.e., how the desired inter-vehicle
distances are defined. Commonly used range policies include: (1) the constant spacing (CS) policy, and (2) the constant time headway
(CTH) policy. In the CS policy, the desired inter-vehicle distance is a constant value, which has the best potential to reduce the
platoon length and thus improve road throughput. In the case of the CS policy, string stability cannot be achieved using identical
linear feedback controllers for the predecessor-following (PF) topology (Seiler et al., 2004; Darbha and Hedrick, 1999; Naus et al.,
2010) and bi-directional (BD) topology (Barooah and Hespanha, 2005). One solution is to broadcast the leader’s information, yielding
the predecessor-leader following (PLF) topology (Darbha and Hedrick, 1999). This strategy poses a high requirement on commu-
nication channels as the platoon length grows. Another method is to use asymmetric controllers (Khatir and Davison, 2004; Ghasemi
et al., 2013), which may cause the feedback gains to increase with the platoon size. A more recent discussion on the CS policy can be
found in Konduri et al. (2017). In the CTH policy, the desired inter-vehicle distance has a linear relationship with the velocity, which
agrees with human drivers’ characteristics to some extent. In the case of the CTH policy, string stability can be achieved without the
dependence on the leader’s information (Ploeg et al., 2014a; Naus et al., 2010). In particular, to guarantee string stability, the
requirement on time headway has a strong connection with the time lag and delay in the vehicle control loop. For example, in Darbha
and Rajagopal (2001), it is proved that the time headway must be two times larger than the time lags in the actuation and sensing
systems. This result has been further extended to account for the parasitic time delays (Xiao and Gao, 2011). In some studies, the
leaders’ information is also used for platoons with the CTH policy, e.g., (Milanés et al., 2014a,b; Chehardoli and Ghasemi, 2018).
Introducing time headway may compromise the transport throughput, since the inter-vehicle distance increases as the velocity grows.
It is therefore desirable to reduce time headway while guaranteeing string stability (Flores and Milanés, 2018).

In addition to the commonly used CS and CTH policies mentioned above, other types of nonlinear range policies were also
studied. For example, a quadratic range policy based on human driving data was proposed in Zhou and Peng (2005) to improve traffic
flow stability and string stability; an adaptive range policy for platoons with the PLF topology was proposed in Rödönyi (2018) to
address the unknown predecessor range policy; a delay-based range policy was proposed in Besselink and Johansson (2017) to
guarantee string stability when disturbances exist. Besides, different control methods were studied to meet the specification of string
stability, such as model predictive control (Dunbar and Caveney, 2012), H control (Ploeg et al., 2014a), sliding mode control (Xiao
and Gao, 2011; Kwon and Chwa, 2014; Guo et al., 2016), adaptive control (Kwon and Chwa, 2014; Guo et al., 2016; Chehardoli and
Ghasemi, 2018), and fractional-order PD control (Flores and Milanés, 2018). We note that these methods typically rely on the CTH
policy or require certain leader’s information for local feedback when using the CS policy.

Recently, the rapid development of V2V techniques enriches the types of information flow topologies, which brings benefits as
well as challenges to the analysis and design of platoon systems. With the introduction of V2V communication, a platoon system can
be more appropriately viewed as a multi-agent system (Jadbabaie et al., 2003; Ren and Beard, 2008; Olfati-Saber et al., 2007; Ren
and Cao, 2010), for which graph theory can be applied to systematically address the modeling and synthesis problems (Yadlapalli
et al., 2006; Zheng et al., 2016; Petrillo et al., 2018; Li et al., 2017a). For example, Fax and Murray (2004) introduced a separation
principle to reduce the formation stability into the information flow stability and the individual vehicle stability. Yadlapalli et al.
(2006) showed a tradeoff between communication and scalable controllers, and proved that at least one vehicle should maintain a
large number of communication links in a rigid platoon to guarantee the existence of scalable controllers. Zheng et al. (2016)
proposed a four-component framework to systematically study the influence of information flow topologies on vehicular platoons in
terms of the internal stability, scalability, and robustness; see, also, Zheng et al. (2018). Similar methods have been used in Petrillo
et al. (2018), Li et al. (2017a) by exploiting the decomposability of information topology matrices. These studies provide certain
insights on the influence of V2V communication on platoons with the CS policy. However, string stability may still be unsatisfied for
platoons with the CS policy (Konduri et al., 2017). Therefore, it remains to be an important topic to address the effect of information
flow topologies on platoons with the CTH policy.

We note that a few recent studies have offered some progress (Chehardoli and Homaeinezhad, 2017; Darbha et al., 2017, 2018).
In these studies, the definitions of the CTH policy are inconsistent with each other. In principle, time headway denotes the time that it
takes for the host vehicle to cover the distance between its own and its predecessor’s front bumpers. For a platoon with the PF
topology, the desired inter-vehicle distance directly depends on the host vehicle’s velocity. As for general information flow topol-
ogies, such as the multiple-predecessor following (MPF) and the multiple-predecessor-leader following (MPLF) topologies, the de-
finition of desired inter-vehicle distances may have different choices. For example, in Chehardoli and Homaeinezhad (2017), the
leading vehicle’s velocity is used to define desired inter-vehicle distances for platoons with the MPLF topology, while in Darbha et al.
(2017, 2018), the host vehicle’s velocity is used for platoons with the MPF topology. These definitions either rely on the leading
vehicle’s information or may cause inconsistency in desired inter-vehicle distances (see Section 3 for details).

In this paper, we study the effects of V2V communication on platoons with the CTH policy. Specifically, we aim to exploit the MPF
strategy to reduce time headway and improve road throughput. First, we introduce a new definition of inter-vehicle distances using
CTH, which avoids inconsistency in desired inter-vehicle distances. Then, we investigate how to reduce the time headway for pla-
toons with the MPF topology via V2V communication. Based on the results on the internal stability and string stability, we show that
increasing the number of predecessors can reduce the bound of allowable time headway. Precisely, our main contributions are:

1. A new definition of desired inter-vehicle distances using CTH is introduced for general information flow topologies under V2V
communication. This definition is a straightforward extension of that in the PF topology, and can avoid inconsistency in desired
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inter-vehicle distances.
2. A set of necessary and sufficient conditions on feedback gains is derived for internal asymptotic stability, which depicts a stability

region for feedback gains and gives a lower bound of allowable time headway for internal asymptotic stability. Our result extends
that in Zheng et al. (2016, 2019) from platoons with the CS policy to platoons with the CTH policy.

3. Further, another set of necessary and sufficient conditions on feedback gains is derived for the string stability specification. This
condition gives another lower bound of allowable time headway for string stability. We show that increasing the number of
predecessors allows one to reduce the bound of allowable time headway. This phenomenon is consistent with the results in Darbha
et al. (2017, 2018), where a different spacing policy was used. Compared with the previous works, one highlight of our results is
that the analytical feasible region of feedback gains is derived in terms of both internal asymptotic stability and string stability,
which explicitly shows the effects of V2V communication on platoon systems. Some preliminary results was summarized in Bian
et al. (2018).

The rest of this paper is organized as follows. Section 2 presents the system modeling, and Section 3 gives the definition of the
desired inter-vehicle distances using CTH. We present the results on internal stability and string stability in Sections 4 and 5, re-
spectively. Numerical experiments are given in Section 6, and we conclude the paper in Section 7.

Notations: The fields of integers, real numbers, and ×m n real matrices are denoted by , , and ×m n, respectively. A matrix
×M m n is represented by its entries … …m i m j n, {1, 2, , }, {1, 2, , }ij , i.e., =M m[ ]ij , and its transpose and conjugate transpose

are denoted by M and MH, respectively. A diagonal matrix ×M n n with diagonal entries …m m m, , , n1 2 is denoted by
…m m mdiag{ , , , }n1 2 . The ×n n identity matrix is denoted by In. For any positive integer N, the set of … N{1, 2, , } is denoted by . The

intersection and union of two sets A and B are denoted by A B and A B, respectively. The AND-operation and OR-operation of
two propositions A and B are denoted by A B and A B, respectively. Finally, the symbol “ ” means “if , then ”, and “ ”
denotes “if and only if ”.

2. System modeling

We consider a platoon of connected vehicles that consists of 1 leader and N followers, indexed by 0 and … N1, 2, , , respectively.
The road is assumed to be straight and flat so the lateral vehicle motion is neglected for convenience. The control objective is to
coordinate the longitudinal motion of connected vehicles so that they keep the desired inter-vehicle distance while maintaining the
desired velocity. As suggested in Zheng et al. (2016), we model a platoon system from four aspects: (1) vehicle dynamics, which
describe the longitudinal behavior of each vehicle; (2) information flow topology, which defines how vehicles exchange information
with each other; (3) formation geometry, which depicts the desired inter-vehicle distances; (4) distributed controller, which im-
plements feedback control law on each vehicle based on local information.

2.1. Vehicle dynamics

In this paper, we use a linear third-order model to represent the dynamics of the leading and following vehicles:

=
=

+ =

p v
v a

a a u
i

,
,

,
{0} ,

i i

i i

i i i i (1)

where p v,i i, and ai denote the position, velocity, and acceleration, respectively; > 0i is the inertial time lag in the powertrain. In
model (1), it is assumed that each vehicle is equipped with a low-level acceleration controller that regulates ai according to ui. The
powertrain system is approximated as a first-order inertial system with a heterogeneous time constant i. This model is simple yet
accurate enough for platoon level synthesis, which is widely used in the literature, e.g., (Zhou and Peng, 2005; Zheng et al., 2016;
Darbha et al., 2017). We note that nonlinear vehicle dynamics are also used in Dunbar and Caveney (2012), Kwon and Chwa (2014),
Zheng et al. (2018). However, in that case, explicit results are rather difficult to derive. A comparison of different models was
discussed in Li et al. (2015).

2.2. Information flow topology

In this study, we assume that there is no communication delay or packet loss. Typical studies on platoons subject to commu-
nication delays and packet losses can be found in di Bernardo et al. (2015), Zhang and Orosz (2016), Petrillo et al. (2018), Harfouch
et al. (2018). The information flow topology among the following vehicles is modeled with a directed graph ( , , ), where

= …{ , , , }N1 2 is a set of nodes representing all the following vehicles, × is a set of edges representing the connections
between each pair of following vehicles, and = ×[ ]ij

N N is an adjacency matrix, defined as

= i j
1, if { , } ,
0, otherwise,

, ,ij
j i

(2)

where { , }j i means that vehicle i can acquire the information of vehicle j. Besides, it is assumed that there is no self-loop, i.e.,
= i0,ii . The property of is further characterized with the following two matrices.
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1. The degree matrix associated with is defined as = … ×diag{ , , , }NN
N N

11 22 with

=
=

i, .ii
k

N

ik
1 (3)

Essentially, ii describes the number of following vehicles of which the information is available for vehicle i.
2. The Laplacian matrix associated with is defined as = ×l[ ]ij

N N with

=
=

=

l
i j

i j
i j

,

,
, .ij

ij

k

N

ik
1

According to (2) and (3), it is not difficult to see that = .

To model the connections between the leading vehicle and the following vehicles, we define a pinning matrix:

= … ×diag{ , , , } ,NN
N N

11 22

where = 1ii if vehicle i can acquire the information of the leader, and = 0ii otherwise.
In this study, we consider the MPF topology, i.e., each vehicle can obtain the information of multiple immediate predecessors via

V2V communication. Fig. 1 gives several examples of the MPF topology. We note that the MPF topology is a direct generalization of
the PF and two-predecessor following (TPF) topologies, which are studied in Ploeg et al. (2014a,b). Here we make the following
assumption.

Assumption 1. The connected vehicles in the platoon are interconnected with an MPF topology, and the number of predecessors that
vehicle i follows is r r i i, 1 ,i i .

Under Assumption 1, we know = >j i0,ij . Then the adjacency matrix becomes a lower-triangular matrix. In addition, we
define the following information topology matrix:

+ = + .

Also, it is easy to see that is a lower-triangular matrix, since both and are diagonal matrices. Moreover, the diagonal
elements of are + = rii ii i.

2.3. Formation geometry

The desired formation geometry of the platoon is defined with desired inter-vehicle distances. In detail, the desired distance
between vehicle i and the leader 0 is d t( )i,0 , of which the precise definition will be given in (8). Then, the control objective is
formulated as

Fig. 1. Examples of the MPF topology (ri is the number of predecessors of vehicle i).
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p t p t d t

v t v t

a t a t

i

lim ( ) ( ) ( ) 0,

lim ( ) ( ) 0,

lim ( ) ( ) 0,

.

t i i

t
i

t
i

0 ,0

0

0
(4)

This objective takes the leader’s information as a reference trajectory, which is a global coordination. However, the leader may
not be connected to all the followers in practice. Indeed, this objective should be achieved using local information in a distributed
way; see the next subsection.

2.4. Distributed controller

We consider the following linear feedback controller:

= + + + +
=

u k p p k v v k a a k p k v k a( ( ) ( ) ( )) ,i
j

N

ij ip i j iv i j ia i j ii ip i iv i ia i
1 (5)

where k k,ip iv, and kia are the feedback gains; p v~ , ~
i i, and ai are the position, velocity, and acceleration tracking errors with respect to

the leading vehicle, respectively, and their precise definitions are given in (9). Note that in this controller, only local information, i.e.,
the neighbors’ information, is used for feedback, since p pi j denotes the relative position error between vehicle i and vehicle j; see
(9). In essence, we aim to use local information to design feedback input (5) for each follower, such that the global coordination (4) is
achieved in a platoon level. Note that ii can be either 1 or 0 depending on whether follower i can communicate with the leader (not
all the vehicles can obtain the leader’s information).

3. Desired inter-vehicle distances using CTH

In this section, we introduce the desired inter-vehicle distances using CTH. For the CTH policy in the PF topology, the desired
inter-vehicle distance between vehicle i and i 1 is naturally defined as

= +d h v D,i i i i, 1 (6)

where hi is the time headway, and D is the standstill gap. When it comes to general information flow topologies, the definitions of
desired inter-vehicle distances are not consistent in the literature. For example, in Chehardoli and Homaeinezhad (2017), the desired
distance between vehicle i and i l is defined as = +=d h v lDi i l k i l

i
k,

1
0 , where v0 is the leading vehicle’s velocity, and hk is the time

headway of vehicle k 1 with respect to vehicle k. This definition is based on the leading vehicle’s velocity, implying that each
vehicle must obtain the leader’s information. In Darbha et al. (2017, 2018), the desired inter-vehicle distance between vehicle i and
i l is defined as = +d lhv lDi i l i, , where h is the time headway of vehicle i with respect to vehicle i l. This definition is based on
the velocity of the host vehicle only. However, this leads to inconsistency in desired inter-vehicle distances in the transient process,
i.e., +d t d t d t( ) ( ) ( )i k i j j k, , , if v t v t( ) ( )i j . Similar issues are also considered in Rödönyi (2018) when the predecessor’s range policy
is unknown.

In this study, we directly extend the definition of the CTH policy of the PF topology to general topologies, by adding the desired
inter-vehicle distances, given in (6), i.e.,

= +
=

+
d h v d ,i i l

k i

i l

k k k,

1

(7)

where h 0k and >d 0k are the time headway and desired standstill gap of vehicle k with respect to vehicle k 1, respectively. This
definition is more intuitive and can avoid inconsistency in desired inter-vehicle distances. It is not difficult to check that:

= +d t d t d t t t( ) ( ) ( ), .i k i j j k, , , 0

Note that the new definition (7) relies on the velocities of l 1 immediate predecessors, which makes system analysis and controller
synthesis nontrivial.

Based on (7), the desired inter-vehicle distance between vehicle i and vehicle 0 becomes:

= +
=

d h v d .i
k

i

k k k,0
1 (8)

Then the tracking error is defined as:
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= + +

=
=

=
p p h v d p

v v v
a a a

i
,

,
,

.
i i

k

i

k k k

i i

i i

1
0

0

0 (9)

Note that p v~ , ~
i i, and ai in (9) are defined with the information of the leading vehicle for notional simplicity only. Indeed, the

calculation of p p v v~ ~ , ~ ~
i j i j, and a ai j in the local controller (5) only requires the local information of its predecessors. For

example, assume >i j, then we have

= + +
= +

p p p p h v d ,i j i j
k j

i

k k k
1

where vehicle i only uses the information of vehicles + …j j i, 1, , .

4. Internal stability analysis

In this section, we first formulate the closed-loop dynamics and then present the internal stability criterion for the closed-loop
system. In principle, it is desired that the vehicular platoon runs at a constant velocity. Typically, the variation of the leading vehicle’s
velocity is viewed as a disturbance on the platoon, which results in a certain transient process. The property of this transient process is
studied by using the notion of string stability; see the next section. Here, we make the standard assumption for internal stability
analysis (Dunbar and Caveney, 2012; Zheng et al., 2016, 2018) by assuming that the leading vehicle travels in uniform motion. We
refer interested readers to the methods in Cao and Ren (2012), Baldi and Frasca (2018), which have the potential to deal with the case
of a dynamic leader. Note that these methods generally rely on nonlinear control design, which will pose challenges to string stability
analysis.

Assumption 2. The leading vehicle is running at a constant velocity, i.e., =u t( ) 00 and =a t( ) 00 .

4.1. Closed-loop dynamics formulation

According to (9) and Assumption 2, we have

= + = +

=
= +

= =
p v h a v h a

v a
a a u

,

,
.

i i
k

i

k k i
k

i

k k

i i

i i i

1 1

1 1
i i

Upon denoting the lumped states as = … = …p p p p v v v v~ [~ , ~ , , ~ ] , ~ [~ , ~ , , ~ ]N N1 2 1 2 , and = …a a a a[ , , , ]N1 2 , (5) can be rewritten into a
compact form as

= … =u u u u K p K v K a[ , , , ] ,N p v a1 2 (10)

where = …K k k k p v adiag{ , , , }, { , , }N1 2 . Then we have

= +
=
= +

p v Ha
v a
a K p K v K a

,
,

( ) ,p v a

where H is called the time headway matrix:

H

h
h h

h h h

0 0 0
0 0

0 ,

N

1

1 2

1 2

and is the time lag matrix:

0 0

0 0
0 0

.

1

1
N

1

Then the closed-loop dynamics can be described as
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=x A x , (11)

where =x p v a[ , , ] and

=A
I H

I
K K K

0
0 0 .

N

N

p v a

In (11), the heterogenous vehicle dynamics are represented by and the structure of A; the information flow topology is char-
acterized by ; the formation geometry is described by H; and the distributed controller is represented by matrices K K,p v, and Ka.
This is consistent with the modeling of the four components in Section 2.

4.2. Internal stability criterion

Now we are ready to present the first theorem on the internal stability region.

Theorem 1. Consider a platoon of connected vehicles with dynamics given in (1), formation geometry given in (8), and distributed controller
given in (5). Suppose that Assumptions 1 and 2 hold and there are no parameter mismatches and disturbances. Then, the platoon is
asymptotically stable if and only if

>
>

> +

k
k

k k h
i

0,
,

,
.

ip

ia r

iv ip k r i

1

1

i

i
ia i (12)

Proof. We only need to analyze the stability of the matrix A given in (11). Since A is stable (or Hurwitz) if and only if all of its
eigenvalues, denoted by i, have negative real parts, we consider the characteristic equation of A.

=
+ +

=
+ +

+

= + + + + +

= + + + + +
=

I A
I I H

I I
K K I K

I I H
I I

K K I K

I I I H

I I
I

I I K K K H K

k r r k k h r k

0

0 0
0 0

| ( ) ( ) |

1 .

N

N N

N N

p v N a

N N

N N

p v N a

N N N

N N

N

N N a v p p

i

N

ia i i iv ip i i ip

3

1 1 1

1

3 2

1

3 2 1 1 1
i i i

2

(13)

The derivation of the last equation in (13) uses the fact that matrices K K, ,p v, and Ka are diagonal, and matrices and H are
lower-triangular. The lower-triangular structures of and H imposed by the MPF topology make it possible to decouple the system
(11) into N subsystems to facilitate the system analysis.

Then, we define the following polynomial

+ + + + +p k r r k k h r k( ) 1 1 1 1 .i
i

ia i
i

i iv ip i
i

i ip
3 2

(14)

Then, system (11) is stable if and only if the roots of p ( )i have negative real parts i . Further, according to the Routh-
Hurwitz stability criterion, p ( )i is stable if and only if

+ >

+ >

>

+ + >

k r

r k k h

r k

k r r k k h r k

1 0,

0,

0,

1 .

ia i

i iv ip i

i ip

ia i i iv ip i i ip

1

1

1

1 1 1

i

i

i

i i i
(15)

Since >r 1 0i and > 0i , the last inequality implies the second one, then we have the following equivalent conditions
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+ > >

> >

+ + > > +( )

k r k

r k k

k r r k k h r k k k h

1 0 ,

0 0,

1 .

ia i ia r

i ip ip

ia i i iv ip i i ip iv ip k r i

1 1

1

1 1 1
1

i i

i

i i i
i
ia i

To sum up, (15) is equivalent to (12). This completes the proof. □

Remark 1. The last inequality of (12) can be reduced to

>
+

h h
k r

k
k1

,i
i

ia i

iv

ip
min,1

which means that hi should be lower bounded by hmin,1. In particular, when =k 0iv , hmin,1 becomes positive, indicating that without
direct velocity error feedback, the minimum employable time headway should be positive, thus the CS policy (where =h 0i ) is no
longer employable. In addition, when = =k k 0iv ia , hmin,1 equals i, meaning that the time headway hi should be greater than the time
lag i if there is no direct velocity error and acceleration error feedback. When =h 0i , Theorem 1 is reduced to the case of the CS
policy; see Zheng et al. (2016, 2019) for details.

5. String stability analysis

In this section, we analyze the string stability for a homogeneous platoon based on the following assumption, which is used in
Darbha et al. (2017, 2018).

Assumption 3. The platoon is assumed to be homogenous. In particular, the vehicles have identical time lags, time headways, and
control gains, i.e., = > = =h h k k p v a i0, 0, , { , , },i i i . The numbers of predecessors are identical, i.e., =r r 1i if
i r , and =r ii if <i r1 .

Under Assumption 3, we denote by K K,0 1, and K2 the feasible region of =k k k k[ , , ]p v a that ensures internal asymptotic stability
given by Theorem 1, i.e.,

>K k k
r
1 ,a a0

(16a)

>K k k k{( , ) 0},p v p1 (16b)

+
>K k k k

k r
h k,

1
0 .p v v

a
p2

(16c)

Next, we formulate the transfer function of the spacing errors and then present the string stability criterion.

5.1. Transfer function of spacing errors

We consider the amplification of spacing errors since spacing errors directly affect platoon safety. We define the spacing error as
= + +e p p d hvi i i i i1 . According to (1), we know

= + = +u a a p p̈ .i i i i i i

Then from (5), we have

+ = + + + +
= = +

p p k p p hv d k v v k a a¨ ,i i
l

r

p i i l
k i l

i

k k v i i l a i i l
1 1 (17)

and

+ = + + + +
= =

p p k p p hv d k v v k a a¨ .i i
l

r

p i i l
k i l

i

k k v i i l a i i l1 1
1

1 1

1

1 1 1 1

(18)

In addition, the time derivative of (17) is

+ = + + +
= = +

v v k v v ha k a a k a a¨ ( ) .i i
l

r

p i i l
k i l

i

k v i i l a i i l
1 1 (19)
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By calculating (17) and (18) + ×h (19), we have

+ + + + + = + +
=

e rk e r k k h e rk e k e k k h r l e k e1 ¨ ( ¨ ( ( )) ).i a i v p i p i
l

r

a i l v p i l p i l
1 (20)

With zero initial conditions, the Laplace transform of (20) becomes

=
=

E s H s E s( ) ( ) ( ),i
l

r

l i l
1

where E s( )i is the Laplace transformation of e t( )i , and

=
+ +

+ + + + +
H s

k s k k h r l s k
s rk s r k k h s rk

( )
( ( ))

( 1) ( )
.l

a v p p

a v p p

2

3 2

Remark 2. The above approach for transfer function formulation was also used in Darbha et al. (2017, 2018). Note that the stability
of H s( )l requires that the denominator is Hurwitz. By comparing the denominator with p ( )i defined in (14), we know that this is
equivalent to the internal stability criterion given in Theorem 1.

5.2. String stability criterion

In a MPF topology, the spacing error of vehicle i is affected by its multiple predecessors. We therefore consider the following
definition of strictly L2 string stability:

=
e t

r
e t( ) 1 ( ) ,i

l

r

i l

2

2

1 2

2

(21)

where +e t e t t( ) ( ) di i2
2 2 is the square of the L2 norm of e t( )i . According to (21), it is required that the square of the L2 spacing

error is attenuated in the sense that it is less than the average of the squares of its predecessors’ L2 spacing errors. Consider the
following string stability specification used in Darbha et al. (2017):

=
H j 1.

l

r

l
1 (22)

Then we have the following two lemmas about the string stability specification.

Lemma 1. The string stability specification (22) is a sufficient condition for the strictly L2 string stability (21).

Proof. According to the Parseval’s theorem (Arfken and Weber, 1972), we have:

=

=

=

+

+

+

=

e t e t t

E j

H j E j

( ) ( ) d

( ) d

( ( ) ( )) d .

i i

i

l

r

l i l

2
2 2

1
2

2

1
2

1

2

According to the Cauchy-Schwarz inequality (Steele, 2004), we have

=

+

=

=

+

=

e t r E j H j H j E j

r H j E j E j

r H j e t

( ) ( ( ) ( ) ( ) ( )) d

sup · ( ( ) ( ))d

( ( ) · ( ) ).

i
l

r

i l l l i l

l

r

l i l i l

l

r

l i l

2
2 1

2
1

H H

1

2
1

2
H

1

2
2
2

(23)

Since =+ H jlim ( )l r0
1 , we know that (22) holds if and only if

H j
r

l r1 , 1 .l
(24)

Then, when (22) holds, substituting (24) into (23) yields (21). This completes the proof. □

In particular, when =r 1, (22) becomes a necessary and sufficient condition for strictly L2 string stability (Ploeg et al., 2014a).

Lemma 2. The string stability specification (22) holds if and only if either one of the following conditions holds for both cases when =l 1 and
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=l r :

C C0 0,0 1 (25a)

<C C0 0 0,0 1 d (25b)

where

C C C4 ,d 1
2

2 0 (26a)

C ,2
2 (26b)

+ +C k r r k hk2 1 2 ( ),a v p1 (26c)

+ +C k r r l r h k r r l hk( (1 ( ) ) 2 (1 ) 2).p p v0
2 2 (26d)

Proof. According to (24), we know that (22) holds if and only if

= =
> > >

H j H j H j H j
r

max maxsup max{sup , sup } 1 ,
l r

l
l r

l r
1

2

1 0

2

0
1

2

0

2

2
(27)

where

=
+

+ + +
H j N

D
k k k k h r l

r k k h rk rk
( ) ( ( ))

( ( ) ) ( ( 1) )
.l

l

l

p a v p

v p p a

2 2 2 2 2

3 2 2 2

The derivation of the last equation in (27) uses the fact that H j( )l
2 is a quadratic function of l. Then we know that the inequality in

(27) holds if and only if

= + +D r N C C C l r( ) 0, {1, },l l
2 2

2
4

1
2

0 (28)

where C C,2 1, and C0 are defined as (26b), (26c), and (26d), respectively. Then we only need to consider the bi-quadratic function
+ +C C C2

4
1

2
0, of which the discriminant is d defined in (26a). Since >C 02 , we know that (28) holds if and only if l r{1, },

(25a) or (25b) holds. This completes the proof. □

Then, we are ready to present the second theorem about the string stability criterion.

Theorem 2. Consider a platoon of connected vehicles with dynamics given in (1), formation geometry given in (8), and distributed controller
given in (5). Suppose that Assumptions 1 and 3 hold and there are no parameter mismatches and disturbances. Then, there exists a set of
feedback gains =k k k k[ , , ]p v a such that the string stability specification (22) holds if and only if:

+
>h h

k r
k

r
2

2 1
, 1

2
.

a
amin,2 (29)

Proof. The proof is based on the analysis of the region defined in (25). See the Appendix for details. □

According to Theorem 2, increasing ka or r (when >k 0a ) can reduce the bound hmin,2, which implies a lower inter-vehicle
distance and higher traffic capacity. The bound hmin,2 remains unchanged when there is no acceleration feedback (i.e., =k 0a ). In this
case, Theorem 2 is consistent with the result in Darbha and Rajagopal (2001), which indicates that the employable time headway is
lower bounded by 2 for string stability. For ACC systems that do not have V2V communication capability, only one predecessor’s
information is available (i.e., =r 1), then the only way to reduce hmin,2 is to increase ka. In this case, Theorem 2 agrees with the result
in Darbha et al. (2017, 2018). Note that our result extends (Darbha et al., 2017, 2018) by considering a new CTH policy to avoid
inconsistency in desired inter-vehicle distances. Theorem 2 is based on the assumption of a homogeneous platoon. Still, simulations
with a heterogeneous platoon in Section 6.2 suggest that the results are useful and might provide certain guidelines for heterogeneous
platoons.

When actuator delays exist, the third equation in vehicle dynamics (1) becomes + =a t a t u t( ) ( ) ( )i i i i a , where > 0a is the
actuator delay. Then, as suggested by Xiao and Gao (2011), an intuition is that hmin,2 may be increased to +

+k r
2( )
2 1a

a . However, this
intuition needs a theoretical proof, which is out of the scope of this paper.

Remark 3. For Theorem 1, the exact value of i is not required for the design of hi and =k k k k[ , , ]i ip iv ia , as long as there exists a
known upper bound of i. For Theorem 2, the design of =h hi needs the upper bound of =i , while the design of

= =k k k k k[ , , ]i p v a needs both the upper and lower bounds of when calculating the sets …K i, {1, 2, , 8}i defined in
(34a)–(34f). This is consistent with the notion of robust string stability in Darbha et al. (2018).

From Theorem 2, we can easily get the following corollary, which is consistent with the results in Seiler et al. (2004), Naus et al.
(2010), Konduri et al. (2017).

Corollary 1. Consider a platoon of connected vehicles with dynamics given in (1), formation geometry given in (8), and distributed controller
given in (5). Suppose that Assumptions 1 and 3 hold and there are no parameter mismatches and disturbances. Then, if the formation
geometry uses the CS policy, i.e., =h 0, the string stability specification (22) will not hold. Consequently, the platoon can never be string stable
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for any feedback gains when =r 1.

6. Numerical experiments

This section presents numerical simulations to validate the proposed theorems. According to (21), we use the following perfor-
mance index to evaluate the attenuation of spacing errors

+ + …

=

Q r e t

e t

i r r N( )

( )

, 1, 2, , .i
i

l

r

i l

2
2

1 2

2

Then we know + + …Q i r r N1, { 1, 2, , }i when the platoon is string stable. On the contrary, if + + …i r r N{ 1, 2, , } such
that >Q 1i , the platoon is string unstable. In addition, both the nominal linear vehicle model (1) and a realistic nonlinear vehicle
model, given in (30), are used for validation. Throughout this section, we plotted spacing error profiles of all vehicles in the figures,
but only the legends of odd numbered vehicles were given due to space limit.

6.1. Simulations of linear platoons

First, we validate the proposed theorems by simulations with the nominal linear vehicle model (1). We consider platoon control in
three cases, i.e., (1) h hmin,1, (2) <h h hmin,1 min,2, and (3) >h hmin,2, and the number of predecessors is =r 1 or =r 3. The initial
errors are assumed to be zero, and a sinusoidal input disturbance =u A tsin( ( 5))d d d is imposed on the leading vehicle during the
time period +t5 5 2

d
(s). The simulation parameters are listed in Table 1 and simulation results are shown in Fig. 2, Fig. 3, and

Table 2.
As shown in Figs. 2(d) and 3(d), when h hmin,1, there are peaks in the magnitude-frequency diagrams, which correspond to the

poles of H j( )l . In this case, the platoons are not stable, which confirms Theorem 1. As shown in Figs. 2(e) and 3(e), when
<h h hmin,1 min,2, the magnitude of H j( )l surpasses

r
1 , which means (22) does not hold. Besides, the spacing errors converge to zero

when the disturbances are removed. As shown in Table 2, when =r 1, we have > …Q i1, {2, 3, ,7}i , so the platoon is asymp-
totically stable but not string stable. This agrees with Theorem 2. Besides, it is observed that <Q i1, {4, 5, 6, 7}i when =r 3 and

<h h hmin,1 min,2. This is because that E s E s( ), ( )i i1 2 , and E s( )i 3 have different phases, so their effects on E s( )i cancel out each
other.

As shown in Figs. 2(f) and 3(f), when >h hmin,2, the magnitude of H j( )l does not surpass
r
1 , which means (22) holds. Besides, the

spacing errors converge to zero when the disturbances are removed. As shown in Table 2, we have < + + …Q i r r1, { 1, 2, ,7}i .
This demonstrates that the platoons are both asymptotically stable and string stable, which confirms Theorem 2.

In Fig. 3(b) and (c), it is observed that the phase of e t( )1 is opposite to those of the other vehicles, which is different from the case
in Fig. 2(b) and (c). This phenomenon arises from the MPF topology and the CTH policy. At =t 5 (s) when vehicle 0 starts to
accelerate, since vehicle 1, 2, and 3 are all connected to vehicle 0, the term + +k p k v k a( )ii ip i iv i ia i dominates their feedback inputs in
(5), so they all start to accelerate, and v v,1 2, and v3 start to increase. However, the increase of p p0 1 is greater than that of
p p p p,1 2 2 3, and hv1, so = + +e p p d hv( )1 0 1 1 1 becomes negative, while = + +e p p d hv( )2 1 2 2 2 and

Table 1
Simulation parameters of linear platoons.

Model parameters

Parameter Unit Value

N – 7
Ad [m/s2] 1
di [m] 10
v0 [m/s] 20

[s] 0.50

Control parameters

Figure r kp kv ka d [rad/s] hmin,1 [s] hmin,2 [s] h [s]

2(a) 1 0.1 0.01 0.01 1.0 0.395 0.980 0.316
2(b) 1 0.1 2.51 0.51 1.0 −24.7 0.495 0.396
2(c) 1 0.1 1.65 0.51 1.0 −16.2 0.495 0.594
3(a) 3 0.1 0.01 0.68 1.6 0.065 0.198 0.052
3(b) 3 0.1 2.52 0.84 1.6 −25.0 0.165 0.132
3(c) 3 0.1 1.67 0.84 1.6 −16.6 0.165 0.198
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= + +e p p d hv( )3 2 3 3 3 become positive, which causes the opposite phases. When it comes to vehicle 4, since it is not connected to
vehicle 0, the increase of v4 is lower than that of v v,1 2, and v3. In addition, p p3 4 and hv4 are almost at the same scale, so

= + +e p p d hv( )4 3 4 4 4 is very close to 0. This also explains why Q4 is very close to zero. The behaviors of vehicles 5, 6, and 7 are

Fig. 2. Simulation results of linear platoons ( =r 1).

Fig. 3. Simulation results of linear platoons ( =r 3).
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similar to those of vehicles 2 and 3.

6.2. Simulations of nonlinear platoons

Next, we evaluate the effectiveness of the proposed theorems for realistic nonlinear platoons. We consider the following nonlinear
vehicle model, which is also used in Dunbar and Caveney (2012), Kwon and Chwa (2014):

=
=

+ =

p v
m v T C v m gf

T T T
i

,
,

,
{0} ,

i i

i i R i i i i i

i i i i

A,
2

des,

i
i

(30)

where T T,i ides, , and i are the desired driving torque (control input), the actual driving torque, and the mechanical efficiency of the
driveline, respectively; mi and Ri are the mass and tire radius, respectively; C f,i iA, , and g are the coefficients of the aerodynamic drag,
rolling resistance, and gravitational acceleration, respectively.

For nonlinear model (30), we use the following feedback linearization law, which is also used in Xiao and Gao (2011), Ghasemi
et al. (2013):

= + + +T R m u f m g C v a C v
^
^ ( ^ ^ ^ 2 ^ ^ ^ ),i

i

i
i i i i i i i i i ides, r, A, A,

2

where m R C f^ , ^ , ^ , ^ , ^
i i i i iA , , and i are the estimations of m R C f, , , ,i i i i iA, , and i, respectively; u ir, is the robust control input, which is

obtained by adding a non-smooth term to the nominal control input ui given in (5) to compensate the parameter mismatch:

=u u k ssign( ),i i i ir, s, (31)

where k is, is the feedback gain, sign(·) is the sign function, and si is the integral sliding mode variable, of which the derivative is:

= +s a a u ,i i i i i

and the integral initial value is zero. This robust controller is designed based on the integral sliding mode control theory (Utkin et al.,
2009) and is also used in Zheng et al. (2019).

In this simulation, we consider platoon control in the case of >h hmin,2, and the number of predecessors is =r 1 or =r 3. The

Table 2
Performance index of linear platoons.

Figure r Q2 Q3 Q4 Q5 Q6 Q7

2(b) 1 1.031 1.032 1.033 1.033 1.033 1.034
2(c) 1 0.890 0.900 0.908 0.915 0.921 0.926
3(b) 3 – – 0.007 0.635 0.601 0.621
3(c) 3 – – 0.000 0.636 0.601 0.608

Table 3
Simulation parameters of nonlinear platoons.

Model parameters [ U (0, 1)]

Parameter Unit True value Estimated value

N – 7 –
Ad [m/s2] 1 –
di [m] 10 –
v0 [m/s] 20 –

i [s] 0.40 + 0.20× 0.50
mi [kg] 1500 + 400× 1700

i – 0.80 + 0.08× 0.84
Ri [m] 0.25 + 0.06× 0.28

C iA, [kg/m] 0.40 + 0.10× 0.45
fi - 0.015 + 0.006× 0.018

Control parameters

Figure r kp kv ka k is, d [rad/s] hmin,1 [s] hmin,2 [s] h [s]

4(a) 1 0.1 1.65 0.51 1 1.0 −16.2 0.495 0.594
4(b) 3 0.1 1.67 0.84 1 1.6 −16.6 0.165 0.198
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simulation parameters are listed in Table 3. As shown in Table 3, model parameters take random values, which are determined by the
uniformly distributed random variable U (0, 1); therefore, the nonlinear platoons are actually heterogeneous. Moreover, the
parameter mismatch from the inaccurate parameter estimation also imposes equivalent disturbances on each vehicle. The simulation
results are shown in Fig. 4 and Table 4.

As shown in Fig. 4, the spacing errors converge to zero when the disturbances are removed. From Table 4, it is observed that
< + + …Q i r r1, { 1, 2, ,7}i . This means that the nonlinear platoons are still asymptotically stable and string stable even if

heterogeneity and parameter mismatch exist.

6.3. Simulations of nonlinear platoons subject to communication time delays

Then, we evaluate the impact of communication time delays on nonlinear platoons. On the basis of the simulations given in
Section 6.2, we impose identical communication time delays td on V2V communications, which can be measured using commu-
nication timestamps. In this case, at time t, vehicle i can only obtain the delayed neighbor states p t t v t t( ), ( )j jd d , and a t t( )j d .
By assuming that the neighbors have constant acceleration motions, the estimated neighbor states at time t become

= + + = +p t p t t v t t t a t t t v t v t t a t t t^ ( ) ( ) ( ) ( ) , ^ ( ) ( ) ( )j j j j j j jd d d
1
2 d d

2
d d d, and =a t a t t( ) ( )j j d . Then, by replacing

p t v t a t[ ( ), ( ), ( )]j j j with p t v t a t[ ( ), ( ), ( )]j j j in ui given in (5), vehicle i continues to use controller u ir, given in (31) for feedback control.
In this simulation, we consider platoon control in the case of >h hmin,2 and =r 1 or 3, and the communication time delay is =t 100d
ms, 200 ms, 300 ms, or 400 ms. The simulation parameters are the same as Table 3, and simulation results are shown in Fig. 5 and
Table 5.

As shown in Fig. 5, vehicles’ position tracking errors increase as the communication time delay increases. As shown in Table 5,
when =r 1, the nonlinear platoons are string stable if t 200d ms, but string unstable if t 300d ms. When =r 3, these two thresholds
are increased to t 300d ms and t 400d ms. These results show that the platoon string stability can still be guaranteed if the
communication time delays are upper bounded. The determination of these bounds in theory deserves further investigations, which is
beyond the scope of this work.

6.4. Simulations of large-scale nonlinear platoons

Finally, we evaluate the performance of the proposed methods for large-scale nonlinear platoons. On the basis of the simulations
given in Section 6.2, we extend the scale of nonlinear platoons to 50 vehicles. The speed profile of the leading vehicle is given as
follows:

=

<
<
<

+ <
v

t
t t

t
t t

t

20, 0 s 10s,
20 ( 10), 10s 20s,
10, 20 s 40s,
10 ( 40), 40s 50 s,
20, 50s ,

m/s0

Fig. 4. Simulation results of nonlinear platoons.

Table 4
Performance index of nonlinear platoons.

Figure r Q2 Q3 Q4 Q5 Q6 Q7

4(a) 1 0.7040 0.8869 0.9015 0.8903 0.9073 0.9256
4(b) 3 – – 0.0002 0.6325 0.5999 0.6024
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and no input disturbances are considered. In this simulation, we consider platoon control in the case of h hmin,2 and the number of
predecessors is =r 10, 20, or 30. The model parameters are the same as Table 3, and the control parameters are listed in Table 6. As
shown in Table 6, the lower bound of time headway hmin,2 is reduced to less than or equal to 0.050 s when r 10, which indicates a
negligible change of inter-vehicle distances as the traffic flow speed varies.

As shown in Fig. 6, the time-space trajectories of the large-scale nonlinear platoons are smooth, and no stop-and-go phenomenon
occurs, which indicates a high traffic throughput. Moreover, in these simulations, it holds that < + + …Q i r r1, { 1, 2, ,50}i ,
which demonstrates the string stability for large-scale platoons.

7. Conclusion

This paper has studied the multiple-predecessor following strategy to reduce time headway for asymptotically stable and string
stable platoons via V2V communication. We have proposed a new definition of desired inter-vehicle distances using CTH that avoids
inconsistency in desired inter-vehicle distances. With the proposed range policy, we have designed a linear feedback controller and
then derived necessary and sufficient conditions for the internal asymptotic stability and the string stability specification. It is proved
that there exists a set of feedback gains to ensure the internal asymptotic stability and the string stability specification if and only if
the time headway is lower bounded. This finding further indicates that increasing the number of predecessors can reduce the time
headway, which, in turn, helps improve transport capacity for highway traffic. As the numerical experiments demonstrated, the string
stability of linear and nonlinear platoons can be guaranteed with the proposed methods if the communication time delay is upper

Fig. 5. Simulation results of nonlinear platoons subject to communication time delays.

Table 5
Performance index of nonlinear platoons subject to communication time delays.

Figure r td [ms] Q2 Q3 Q4 Q5 Q6 Q7

5(a) 1 100 0.8027 0.9139 0.9242 0.9363 0.9311 0.9250
5(b) 1 200 0.8665 0.9786 0.9617 0.9789 0.9718 0.9722
5(c) 1 300 0.9333 1.0487 1.0316 1.0334 1.0314 1.0305
5(d) 1 400 1.0440 1.1131 1.1162 1.1273 1.1135 1.1280
5(e) 3 100 – – 0.0073 0.6315 0.6061 0.6284
5(f) 3 200 – – 0.0393 0.6466 0.6093 0.7147
5(g) 3 300 – – 0.1109 0.6394 0.6332 0.8858
5(h) 3 400 – – 0.2244 0.6578 0.7182 1.1174

Table 6
Control parameters of large-scale nonlinear platoons.

Figure r kp kv ka k is, hmin,1 [s] hmin,2 [s] h [s]

6(a) 10 0.1 1.68 0.96 1 −16.765 0.050 0.059
6(b) 20 0.1 1.68 0.99 1 −16.799 0.025 0.030
6(c) 30 0.1 1.68 0.99 1 −16.810 0.017 0.020
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bounded. One future work is to directly consider the effect of the heterogeneity on the string stability of vehicular platoons. The effect
of communication delays and packet losses is another interesting direction for future studies.
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Appendix A. Proof of Theorem 2

According to Remark 2, it is required that the platoon should be asymptotically stable, i.e., k K k k K K, ( , )a p v0 1 2. By com-
bining (26a)–(26d) with (16a)–(16c), we have the following four cases:
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To sum up, following the sequence of equivalences, we have

l r(22) holds {1, }, (32a) (32b) holds, or (32a) (32c) (32d) holds. (33)

For convenience, denote the feasible region of k k( , )p v given in (32a)–(32d) by the following sets:

+K k k k h k
rh

,
2

1 ,p v v p3
(34a)

+K k k k r h k
r h

, ( 2)
2

1 ,p v v p4 2
(34b)

+ +K k k k hk k r
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2

,p v v p
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(34c)

Fig. 6. Simulation results of large-scale nonlinear platoons.
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> + +K k k k hk k r
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, 2 1
2

,p v v p
a

6
(34d)

+ +K k k r k k r
r

k r h k, 2 1
2

((2 1) 2 ) ,p v v
a

a p7

2

(34e)

+ + +K k k r k k r
r

F k k r
r

F, 2 1
2

2 1
2

0 .p v v
a

v
a

8

2

1 0
(34f)

Necessity. Assume that there exists a set of feedback gains =k k k k[ , , ]p v a such that (22) holds. According to (33), either (32a)
(32b) or (32a) (32c) (32d) holds when =l r . On the one hand, if (32a) (32b) holds, combining (32a), (32b), and =l r yields

+ + +h k
rh

k hk k r
r2

1 2 1
2

,p v p
a

which implies (29). On the other hand, if (32a) (32c) (32d) holds, since >k k K K k( , ) 0p v p1 2 , combining (32d) and =l r
yields

+k r h(2 1) 2 0,a

which also implies (29).
Sufficiency. Assume that (29) holds.
When > >+h k,k r a r

2
2 1

1
2a

, we consider the following two sets:

S K K K
S K K K K K

,
.

1 3 4 5

2 3 4 6 7 8

Given a set of parameters h k r, ,a , and , the feasible regions of k k( , )p v given by K K S( )1 2 1 and K K S( )1 2 2 are shown in
Figs. 7 and 8, respectively. Here, we use the fact that the outlines of K7 and K8 are both quadratic parabola curves. In these figures,
dash lines indicate open sets while solid lines indicate closed sets. In addition, forward slashes indicate the feasible regions. It is easy
to check that K K S( )1 2 1 and K K S( )1 2 2 are not empty. Moreover, k k S( , )p v 1 implies that (32a) (32b) holds, and
k k S( , )p v 2 implies that (32a) (32c) (32d) holds. Then, according to (33), we know that k k K K S S( , ) ( ) ( )p v 1 2 1 2 , (22)

holds.
When = >+h k,k r a r

2
2 1

1
2a

, we define the following feasible region of k k( , )p v :
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and we consider the following set

=S K K .3 9 10

Fig. 7. The feasible region of k k( , )p v given by K K S( )1 2 1.
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It is not difficult to check that K K S( )1 2 3 is not empty. Then k k K K S( , ) ( )p v 1 2 3, we have:

+ = >k h k
rh

h k
2

1
2

0,v p p (35a)

= +k r h k
r h
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+ + + =r k k r
r
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F r r l hk hk r l k2 1
2

2 1
2

( ( ) 2 ) 0.v
a

v
a

p p v

2

1 0
(35e)

Since (35a) (35b) k k K K( , )p v 3 4, (35c) k k K( , )p v 6, (35d) (35e) k k K K( , )p v 7 8, we have
=k k K K K K K S( , )p v 3 4 6 7 8 2, which implies that (32a) (32c) (32d) holds. Then according to (33),

k k K K S( , ) ( )p v 1 2 3, (22) holds.
To sum up, there exists a set of feedback gains =k k k k[ , , ]p v a such that (22) holds. □
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