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Accurate on-board occupant injury risk prediction of motor vehicle crashes (MVCs) can decrease fatality rates by providing
critical information timely and improving injury severity triage rates. The present implemented prediction algorithms in vehicle
safety systems are probabilistic and rely on multi-variate logistic regression of real-world vehicle collision databases. As a result,
they do not utilize important vehicle and occupant features and tend to overgeneralize the solution space. This study presents
a framework to address these problems with deterministic and computationally efficient lumped parameter model simulations
driven by a database of vehicle crash tests. A 648-case mixed database was generated with finite element and multi-body models
and validated under the principal directions of impact with experimental results for a single vehicle body type. Using the finite
element database, we developed lumped parameter models for four principal modes of impact (i.e., frontal, rear, near side and far
side) with parameters identified via genetic algorithm optimization. To obtain confidence bounds for the injury risk prediction,
the parameter uncertainty and model adequacy were evaluated with arbitrary and bootstrapped polynomial chaos expansion. The
developed algorithm was able to achieve over triage rates of 17.1% ± 8.5%, whilst keeping the under triage rates below 8% on a
finite element-multi body model database of a single vehicle body type. This study demonstrated the feasibility and importance of
using low-complexity deterministic models with uncertainty quantification in enhanced occupant injury risk prediction. Further
research is required to evaluate the effectiveness of this framework under a wide range of vehicle types. With the flexibility of
parameter adjustment and high computational efficiency, the present framework is generic in nature so as to maximize future
applicability in improved on-board triage decision making in active safety systems.

occupant safety, injury prediction, lumped parameter model, motor vehicle crash, uncertainty quantification

Citation: Bance I, Yang S C, Zhou Q, et al. A framework for rapid on-board deterministic estimation of occupant injury risk in motor vehicle crashes with
quantitative uncertainty evaluation. Sci China Tech Sci, 2020, 63, https://doi.org/10.1007/s11431-019-1565-9

1 Introduction

According to the World Health Organization, there were
256180 road traffic deaths in China in 2018 [1]. This num-
ber could be significantly reduced by improving the accu-
racy of on-board injury risk prediction, and as a result triage
rates of motor vehicle crashes (MVC) [2]. A typical active
vehicle safety system that heavily relies on accurate occu-
pant injury risk prediction is the advanced automatic crash
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notification (AACN) system. By providing occupant injury
risk information to the emergency medical services (EMS)
post-collision, response times can be reduced and triage rates
improved. These systems are already in active use, with a
2011 study estimating that more than 12 million vehicles on
US roads are equipped with (A)ACN systems [3]. According
to recent estimates, their complete implementation and adop-
tion by EMS could have led to an estimated 361–721 lives
saved in 2017 in the US alone [2].

Existing on-board occupant injury risk prediction algo-
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rithms mostly rely on multi-variate logistic regression of real-
world accident data sets, covering a wide range of vehicle
types (Table 1) [4–12]. This method of supervised machine
learning regresses categorical data to predict the probability
of sustaining an injury above a certain severity level. The
most common decision factors include: belt use, collision
delta-v, occurrence of multiple impacts and principal impact
mode, i.e., frontal, rear, near side and far side. The two main
injury severity criteria used are the maximum abbreviated in-
jury score (MAIS) and the injury severity score (ISS) (Ap-
pendix A), where MAIS3+ or ISS15+ indicate that the occu-
pant should be sent to a high level trauma center. Most algo-
rithms have trained and validated their models with US pub-
licly available accident data sets, e.g., the National Automo-
tive Sampling System Crashworthiness Data System (NASS
CDS) database. Some studies have explored vehicle colli-
sion databases from other countries, i.e., the German in-depth
accident study (GIDAS) [4] and the institute for traffic acci-
dent research and data analysis (ITARDA) for Japan [5, 6].
The current state-of-the-art on-board injury risk prediction
algorithm on the EDR triggered subset of the NASS CDS
database is the OTDA algorithm [7]. The OTDA algorithm
has achieved over-triage (OT) and under-triage (UT) rates of
50% and 7% (frontal); 49% and 9% (near side); 49% and
6% (far side); 25% and 8% (rear), respectively. The Amer-
ican College of Surgeons recommends to keep OT rates at
least below 50% and UT rates below 5% [13]. Optimal triage

rates have, thus, not yet been achieved with probabilistic al-
gorithms utilizing logistic regression.

For advanced vehicle safety systems that predict occupant
injury risk to make life-threatening decisions a quantification
of prediction uncertainty is necessary to develop a compre-
hensive solution. To our knowledge, the combined predic-
tion uncertainty of both model adequacy and parameter un-
certainty of injury risk prediction algorithms has remained
unquantified to date. The use of limited size real-world MVC
databases for probabilistic model training impede the appli-
cation of classic forward uncertainty propagation methods,
such as Monte Carlo sampling. Rapid developments in non-
sampling based polynomial chaos expansion (PCE) methods
have shown promise to reduce the necessary number of func-
tion evaluations to estimate statistical moments [14]. This
can also be combined with bootstrapping to generate boot-
strap replications, termed as bPCE, to return an error estimate
of the uncertainty quantification itself [15, 16].

Due to the inherent complexity and uncertainty of real-
word accident databases, numerical data sets of these com-
plex collision environments have been created with biofidelic
occupant injury model simulations. This approach has be-
come increasingly attractive with the rise of “parallel” driving
system theory, where a limited amount of real data is aug-
mented with validated numerical data [17]. Two existing
studies have explored such an approach to tackle the limi-
tations of logistic regression on a real-world vehicle collision

Table 1 Overview of recent injury risk prediction models for MVC occupant injury risk

Category
URGENCY OnStar Bose Katagiri Lubbe Weaver Honda-Nihon Toyota-Nihon OTDA
(2001) [10] (2011) [11] (2011) [9] (2013) [8] (2014) [4] (2015) [12] (2016) [5] (2017) [6] (2016) [7]

Vehicle

Seat belt use X X X X X X X X

Airbag use X X X

Vehicle interior X

Omni-vehicle coverage X X X X X X X X X

Impact type

Crash pulse use X

Impact angle X

Impact modes X X X X X X

Multiple impacts X X X X X X

Oblique impacts X X X X X X X

Roll-over X

Occupant

Posture X

Gender X X X

Age X X X X X

Morphology X X

Multiple occupants X

Body region injuries X X X

Methodology

Low-complexity X X X X X X X X

Type LR LR Multi-body model LR LR LR LR LR LR

Decision metric MAIS3+ ISS15+ N/A N/A ISS15+ N/A ISS15+/MAIS3+Serious injury ISS15+

Database NASS CDS NASS CDS NCAP MB-FE GIDAS NASS CDS ITARDA ITARDA NASS CDS
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database. Katagiri et al. [8] generated an artificial collision
database with a multi-body (MB) modeling solver to obtain a
more detailed database that contains information on occupant
stature and impact angle. Improved accuracy was obtained,
but the approach was still probabilistic and, therefore, limited
by the difficulty of generalizing the dozens of logistic predic-
tors over the entire solution space. The second approach con-
sists of simulating the collision with a MB solver after it has
taken place [9, 18]. As a result, important injury predictors
can be considered, such as vehicle crash pulse [19], vehicle
interior layout, occupant posture and occupant morphology
[20–22]. These higher complexity simulations are computa-
tionally expensive and require significant computational re-
sources, which largely limit the feasibility of being used on-
board a vehicle system for rapid injury risk estimation.

As computationally efficient tools, lumped parameter
models (LPM), which are simplified lumped representations
of mechanical systems, have been used extensively for pre-
liminary rapid evaluation of restraint systems and injury risk
at a whole-body level [23–28]. Such models have been de-
veloped for frontal, near side and rear collision scenarios,
to estimate chest, head and neck primary collision injuries
based on kinetic responses. The extensive research and ap-
plication in industry of these simplified models have demon-
strated their prediction robustness and accuracy for low com-
putational costs [25, 29].

This study proposes a framework for rapid and abbrevi-
ated injury scale (AIS)-level accuracy injury risk estimation

of common collision scenarios demonstrated with a single ve-
hicle type. With a balance of computational efficiency and
modeling capability, LPMs in the primary direction of impact
were used over other more complex modeling approaches.
A methodology for LPM parameter uncertainty and model
adequacy quantification is proposed with arbitrary and boot-
strapped PCE. Such a framework can form the basis for a
new tool of on-board, accurate and rapid post-collision injury
risk assessment of vehicle occupants to reduce current MVC
triage and fatality rates.

2 Methods

This study’s technical framework consisted of two main
phases: the mixed database creation phase and the LPM
development-evaluation phase (Figure 1). For the creation
of a finite element (FE) model vehicle collision database and
a FE-MB model occupant injury database, simulation plat-
forms LS-DYNA R8.0 (Livermore Software Technology Cor-
poration, US) and MADYMO R7.5 (TNO MADYMO BV.,
Netherlands) were used, respectively. A publicly available
Toyota Yaris vehicle model was selected as a representation
of a typical passenger car. The most representative cases of
the generated database were validated with respect to existing
experimental crash test results of the National Highway Traf-
fic and Safety Administration (NHTSA) and the Insurance In-
stitute for Highway Safety (IIHS). In the second phase, LPMs
for four common collision scenarios were developed. The re-
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maining part of the database was used for validation, given
the crash pulse from the event data recorder (EDR), occupant
information (i.e., gender, posture and morphology), and re-
straint configuration (i.e., belt use, airbag use, belt load lim-
iting force, pre-tensioner force and airbag firing time). To
mitigate the risk and uncertainty associated with occupant in-
jury risk estimation, prediction accuracy confidence bounds
were determined with arbitrary and bootstrapped PCEs for
each occupant injury model.

2.1 FE vehicle collision database

This database was generated with George Washington Uni-
versity National Crash Analysis Center’s (NCAC) FE model
of a production 2010 Toyota Yaris vehicle [30] and LS-
DYNA’s FMVSS 214 MDB shell elements FE model [31].
Both models have individually been validated with NHTSA
experimental crash test results. To obtain a wide range of col-
lision scenarios, the Toyota Yaris vehicle was set to be the tar-
get vehicle and the MDB the bullet vehicle. This is in accor-
dance with the usage methodology of the NHTSA’s FMVSS
214 side-impact crash tests. Fifty-seven different collision
scenarios were considered at different collision ∆v (40, 50
and 60 km/h) and impact angles (0◦ to 180◦ at a 10◦ interval),
as illustrated in Figure 2(a). For this exploratory study, sym-
metry around the longitudinal axis was assumed to reduce the
computational burden. To gain a better understanding of the
obtained vehicle collision database, the vehicle acceleration
time histories were parametrized to a haversine function with
peak acceleration and duration parameters (1). This function
is commonly used in occupant restraint collision tests for its

simplicity and accuracy in representing vehicle crash pulses
[32].

aveh = A sin2
(
πθ

2

)
, (1)

where aveh is the vehicle C.G. acceleration, A represents the
crash pulse amplitude and θ is the duration.

2.2 FE-MB occupant injury database

The occupant-vehicle interior simulations were performed in
a FE-MB solver with a modified NCAC model of the pro-
duction 2010 Toyota Yaris interior [33] (Figure 2(b)). Some
modifications were made to the model to accommodate all the
considered crash modes. The center console, door window
and door frame were modeled with multi-body elements ac-
cording to the dimensions of NCACs Toyota Yaris FE model
used for the vehicle collision database. Vehicle doors made of
up of trim, foam and metal frame multi-body ellipsoids were
added. Door crush significantly influences occupant injury
for side-impact collisions [24]. Hence, door and seat motion
were also simulated by utilizing the door crush and seat dis-
placement time-histories obtained from the vehicle collision
simulations.

A wide range of occupant, restraint and collision combi-
nations were simulated with a FE-MB solver, amounting to
648 cases. Only the driver was simulated to minimize the
size of the simulation matrix, as well as reduce the computa-
tional burden for this exploratory study. The simulation ma-
trix included variations in collision ∆v (40, 50 and 60 km/h),
impact angle (0◦ to 360◦ in 10◦ intervals), restraint configu-
ration (belted w/o frontal airbag, unbelted w/o frontal airbag,
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Figure 2 (Color online) Vehicle collision database and occupant injury database FE and MB models. (a) FE MDB-vehicle model; (b) FE-MB vehicle
interior-occupant model.
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belted w/ frontal airbag and unbelted w/ frontal airbag), occu-
pant (50th percentile male and 5th percentile female ellipsoid
MB models) and occupant posture (normal: lumbar flexion
of 5.8◦ and forward leaning: lumbar flexion of 25◦; as illus-
trated in Figure S1). The forward leaning posture was se-
lected based on a recent study that determined this posture
angle to be especially prone to increased injury severity [20].

The recorded injury measures included the highest sever-
ity injuries recorded in experimental crash tests for the Toy-
ota Yaris vehicle: HIC, Ni j, CTI (for side impact), Ccomp (for
frontal impact) and VCabdomen (for side impact) (Appendix
A). Three comparable experimental crash tests were used
to validate this database in three principal directions of im-
pact: frontal (56 km/h rigid wall crash test for 50th percentile
male [34]; NCAP-MGA-2006-011), near side (50 km/h MDB
crash test for 5th percentile female without side airbags [35];
CES0639) and rear (32 km/h sled test for 50th percentile male
[36]; SER06044).

2.3 LPM structure

Four two-dimensional LPMs were developed to simulate the

most common collision scenarios (Figure 3). The contact
mechanics were joint-, C.G.- and body perimeter-based, de-
pending on the given constraint. To capture the injury mecha-
nism and occupant response with minimal computational re-
sources, linear springs and dampers were utilized. The frontal
LPM was developed to account for a wider range of restraint
and occupant configurations, compared to existing LPM de-
signs [23, 25, 26]. Knee bolster, steering and dash were in-
cluded, in addition to lap belt, shoulder belt and airbag. A
seat friction coefficient of 0.5 was used, based on the val-
idated NCAC Toyota Yaris interior MADYMO model. Belt
pre-tensioning and load limiting was accounted for in the belt
spring forces, with the thresholds set to the NCAC models
settings. The airbag consisted of a damper and constant force
spring that activates when the airbag reaches full deployment.
The airbag firing time was identical to the NCAC model’s
settings. Based on the frontal crash test performed by the
NHTSA, it was determined that for the Toyota Yaris, head,
neck and chest injuries are the primary modes of injury for
the driver in frontal collisions [34]. To determine the severity
of these injuries the HIC, Ni j and Ccomp were selected (Ap-
pendix A). The Ccomp was evaluated by including a chest stiff-
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ness spring, from which the chest deflection could be derived.
The Ni j was evaluated at the upper neck joint with recorded
normal and moment loads.

The developed rear LPM differed significantly from the
very limited existing ref. [32]. Since occupant sliding is sig-
nificant with high speed rear impacts, the occupant feet had
an additional longitudinal DOF, but were limited in motion
when contacting the seat bottom. Back and head rest spring
dampers were also included. The IIHS rear sled test results
indicated that head and neck injuries are the primary modes
of injury for the Toyota Yaris vehicle [19]. Hence, HIC and
Ni j were the evaluated injury measures for the rear LPM. The
developed near side LPM, similarly to existing side LPMs
[24, 27, 37], included door crush, but differed in that it mod-
els the entire upper body of the occupant. This was done so
as to account for all the primary modes of injury in near side
impact for the Toyota Yaris, as indicated by the NHTSA side
impact crash tests [38]. This includes head, neck, chest and
abdomen injury, for which the HIC, Ni j, VC and CTI mea-
sures were selected.

The mass of the upper extremities was included in the
chest body element and the mass of the lower body was in-
cluded in the mass of the pelvis element. The door and seat
motion time-histories were obtained from the vehicle colli-
sion database. To simulate the restriction in body motion
for belted occupants, the seat slip constraint damping was
increased by a fixed tunable factor. To our knowledge, no
literature exists on far side LPMs. Our proposed design used
the same body segmentation as the near side LPM with an
added far side door and seat. The seat stiffness and damping
properties were identical to the three aforementioned LPMs.
Since driver seat displacement in far side collisions is min-
imal, it was decided to not include it in the far side LPM.
All LPMs were developed on MATLAB Simulinks Simscape
Multi-body platform R2017b (The Mathworks Inc., US).

2.4 LPM tuning and validation methodology

Parameters in the developed LPMs were identified via genetic
algorithm (GA) meta-heuristic optimization. A four-step pro-
cess was employed. During the first global optimization, a 6-
to 8-case set, including varying belt use, airbag use and gen-
der, was used for concurrent optimization of all the parame-
ters. A population size of 50 was used to introduce sufficient
diversity into the initial GA generation. Next, the results were
used to perform individual base case optimizations, where the
optimization parameters were limited to case relevant ones,
e.g., belt and airbag parameters for the “belt and airbag in
use” cases. With fewer optimization parameters, the popu-
lation size was reduced to 20. After this, the occupant op-
timization was executed to obtain the occupant joint related

coefficients for occupant types that had not been previously
optimized for. Finally, the obtained coefficients were eval-
uated and validated with the remaining unseen cases of the
FE-MB database. The optimization cost function used was
equal to the sum of injury level prediction errors and ISS pre-
diction error, with a constraint of a 10 s simulation time on
an Intel i7-8550U 1.8 GHz system (2). The ground truth was
assumed to be the FE-MB database predicted injury levels,
i.e., AIS for each injury type and ISS for whole-body injury.

min
n∑

i=1

(
eAISi

)
+ eISS, (2)

s.t. Tsim 6 Tlim, (3)

where eAISi represents the error in injury level predicted (AIS
level) for n considered injuries, eISS represents the error in
whole-body injury level predicted (ISS level), Tsim is the sim-
ulation time in seconds and Tlim is the simulation time con-
straint. The simulation time was constrained to accelerate
convergence to the optimal solution and avoid excessively
large damping factors, which are computationally expensive.
To minimize the off-set from the ground truth (i.e., the FE-
MB database), coefficients were selected according to the
aforementioned tuning framework and verified to be coherent
within a single LPM coefficient basis and between different
LPM models.

2.5 Quantitative prediction uncertainty evaluation

Forward uncertainty propagation with PCEs was applied for
parameter uncertainty and model adequacy quantification.
This was achieved by making a surrogate modelMPC(X) of
the computational modelM(X) (4).

M(X) ≈ MPC(X) =
∑
α∈A

yαψα(X), (4)

where X represents the random component vector, yα ∈ R the
multivariate polynomial coefficients and ψα the multivariate
polynomials that are orthonormal to the joint probability den-
sity function of X. The arbitrary polynomial form (aPCE)
was used, because it does not assume a probability density
function form.

Such an approach was implemented for our model in a
MATLAB extension, called Uncertainty Quantification lab
(UQlab, ETH Zurich, Switzerland). Two sensor input vari-
ables of the LPM were selected: occupant posture (defined
as lumbar flexion from the neutral 5.8◦ angle) and seating
position (defined as seat track location from neutral posi-
tion). These were selected because they do not require tun-
ing of new body types or vehicle interior coefficients. Sen-
sor measurement errors of the occupant posture and seating
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position were assumed to not exceed 5◦ and 5 cm, respec-
tively, 95% of the time, following a Gaussian error distri-
bution. A PCE metamodel was used with a least angle re-
gressions (LAR) optimization approach to determine the ar-
bitrary PCEs. The polynomials were truncated to a maxi-
mum degree of 15. A set of 50 sample simulations were run
with a latin hypercube sampling approach. Next to the two
sensor measurements, the varied parameters included: col-
lision ∆v (40–60 km/h), impact angle (0◦–360◦), restraint
configuration (belted with/without frontal airbag, unbelted
with/without frontal airbag, belted with frontal airbag and un-
belted with frontal airbag) and occupant (50th percentile male
and 5th percentile female ellipsoid MB models). One hun-
dred and fifty bootstrap replications were used for the boot-
strapped PCE, as recommended in ref. [15].

2.6 Triage performance evaluation

The triage performance for the LPM based injury risk estima-
tion was evaluated with the FE-MB occupant injury database
within the impact angle coverage of all LPMs (excluding the
training cases). The FE-MB database was used for evalua-
tion, since available real-world data sets, e.g., NASS-CDS, do
not include a sufficient number of cases involving a Yaris ve-
hicle model. The triage decision metric used was ISS15+. A
recent LR injury risk estimation algorithm was also compared
on the same database with its logistic regression based injury
risk predictors [7]. This algorithms was selected because it
utilizes the ISS15+ metric for triage decision, covers all four
principal directions of impact and has been shown to obtain
the best triage rates on the NASS CDS data set. The perfor-
mance of the OTDA algorithm was evaluated for its recom-
mended RT [7]. To serve as a comparison, the performance
of the OTDA algorithm was evaluated using the present FE-
MB database and compared to its reported performance on
the EDR triggered subset of the NASS CDS database.

3 Results

First, the created vehicle collision and occupant injury
databases are presented. Next, the tuned LPM coefficients
and impact angle coverage are given, followed by their pre-
diction performance and uncertainty evaluation. Finally, the
model injury risk triage performance is presented and com-
pared to existing algorithms.

3.1 FE vehicle collision database validation

The vehicle collision database setup was validated by sim-
ulating an experimental crabbed side impact collision per-
formed by the NHTSA [38]. Similarity of the simulated and

experimental vehicle acceleration time-histories for both lon-
gitudinal and lateral directions was assessed via CORrela-
tion and Analysis (CORA) [39]. An average CORA score
of 0.724 and 0.863 was obtained, indicating a fair to good
fit between the simulation and experiment. However, short
acceleration peaks around 10 ms were observed for the simu-
lation results in both directions that were not observed in the
experimental results (Figure S2).

The post-collision side impact patterns exhibited a mid-
door maximum exterior static crush of 221 and 230 mm
for the experimental and simulation results, respectively
[38]. For visualization and comparison, the vehicle colli-
sion database was parametrized to a haversine function with a
mean parametrization r-squared value of 65.0%±9.8% (Fig-
ure 4). Side impact collisions resulted in significantly higher
peak accelerations and smaller crush zones. Collision dura-
tion was not highly correlated with delta-v, but systematically
longer for oblique impact angles.

3.2 FE-MB occupant injury database validation

The occupant injury database was validated in the three prin-
cipal directions of impact by simulating experimental crash
tests performed by the NHTSA and IIHS [34–36, 40]. These
experimental collisions were compared with simulation re-
sults of relevant injury metrics for the developed LPMs, in-
cluding: HIC, Ni j, maximum neck shear force, maximum
neck tension force, maximum thorax acceleration, etc. Most
injury measures agreed well with an average error of 16.6%
± 22.4% (Table S1). A notable exception was the maximum
neck shear force recorded during the rear collision sled test,
for which a discrepancy of 178 N from 31 N was observed.

The FE-MB resulting database possessed a satisfactory
distribution in injury levels with 52.8% of cases being
ISS<15 and 47.17% of cases being ISS>15. The obtained
injury levels were used to generate “delta-v-impact angle”
injury maps for different occupants, restraints and postures.
To illustrate, the obtained injury map for the normal posture
50th percentile male with restraint is given (Figure 5). For
a restrained 50th percentile male occupant, only the side im-
pact MVCs were serious, i.e., ISS>15, due to the absence of
side impact airbags.

3.3 Fine-tuned LPM angle coverage and prediction ac-
curacy

The LPMs exhibited low injury prediction errors for all injury
types and impact directions (with median whole-body injury
prediction errors ranging between 5% and 12%), except for
Ni j in far side collisions. The parameters obtained from the
GA tuning procedure for the four LPMs can be found in Ap-
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Figure 5 (Color online) Occupant injury database accumulated injury levels for regional injuries (AIS) and overall body injury (ISS) (shown: normal posture
50th percentile male with airbag and belt in use).

pendix E, Tables S2–S5. These parameters are valid over a
range of low oblique impact angles: frontal (340◦–30◦), near
side (80◦–110◦), rear (140◦–210◦) and far side (250◦–280◦)
(Figure 6).

These ranges were determined by allowing a maximum
deterioration in injury level prediction accuracy of 5% com-
pared to the base scenarios, i.e., 0◦, 90◦, 180◦ and 270◦. Out-
side of these ranges, the occupant body undergoes highly
three-dimensional motions, that cannot be represented by
two-dimensional LPMs. The injury level prediction accuracy
of the four LPMs is shown in Figure 7.

From the error box-plot, it can be deduced that the lowest
prediction error was obtained for chest and abdomen injuries,
where the errors did not range beyond zero. The longitudi-
nal impact LPMs outperformed the lateral impact LPMs for
most injury types. These also tended to underestimate injury
severity, whilst the lateral LPMs mainly overestimated in-
jury severity. The mean computational time for all the LPMs
did not exceed 10 s on an Intel i7-8550U 1.8 GHz platform

(7.23±0.92, 8.66±1.82, 3.68±0.73 and 3.05±0.83 s for the
frontal, rear, near side and far side LPM, respectively).
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Figure 6 (Color online) LPM simulation impact angle coverage (grey).
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Figure 7 (Color online) LPM absolute injury level prediction error box-plot.

3.4 Model adequacy and parameter uncertainty quan-
tification

The second order statistical moment estimation from the
aPCE analysis for incorrect inputs of occupant posture and
seating position due to possible sensor measurement inaccu-
racy on the OT and UT rates is shown in Table 2. LPM param-
eter and model uncertainty (σ) was on average 5.5%±2.7%
for OT rates and 3.1%±3.0% for UT rates.

The maximum PCE degrees, which define the PCE mul-
tivariate polynomial degree and are a sign of uncertainty
metamodel complexity, were larger for the higher complex-
ity LPMs. The leave-one-out (LOO) error, which captures
lack of generalization capability of the PCE, was observed
to be higher for the near side LPM, i.e., LOO of 0.37 and
0.74. The results for the frontal, rear and side LPMs indi-
cated satisfactory PCE fitting was achieved with bootstrap
confidence bounds being narrow and close to the validation
basis, as shown for the frontal LPM (Figure 8).

With the possible inaccurate sensor measurements of occu-
pant posture (defined as lumbar flexion from neutral 5.8◦ an-
gle) and seating position (defined as seat track location from
neutral position) incorporated into the LPM, the obtained OT
and UT rates were generally larger. A positive posture off-set

Table 2 aPCE uncertainty quantification for all principal modes of impact
for the developed LPM

OT rate
Parameter

Frontal Rear Near side Far side

Max. degree 10 5 3 3

LOO 0.14 0.08 0.37 0.15

SD (σ) 5.1 9.4 1.8 5.5

UT rate
Parameter

Frontal Rear Near side Far side

Max. degree 7 4 2 3

LOO 0.08 0.08 0.74 0.06

SD (σ) 2.1 1.1 1.0 8.2

indicates a sensor overestimating occupant posture, i.e., a
sensor returning a higher value of occupant posture than the
actual value input to the LPM simulation. In this way, the
effect of limited sensor measurement accuracy (termed as
“parameter uncertainty”), as well as the effects of model ac-
curacy (termed as “model adequacy”), on the accuracy of
the predictions can be evaluated. In some instances, lower
OT and UT rates were achieved with incorrect sensor inputs,
however, the values at which this occurred varied widely and
were observed to be contradictory. This can, for example, be
observed for the seating off-set of the frontal LPM (Figure 8).

3.5 Triage performance evaluation

The developed deterministic approach consistently achieved
lower OT rates compared to the OTDA algorithm, whilst
keeping the UT rates below 8% levels. The triage perfor-
mance for the deterministic LPM based injury risk estima-
tion was evaluated with the FE-MB validation subset within
the impact angle coverage of all LPMs, by comparing it with
a state-of-the-art LR based algorithm [7]. The LR based al-
gorithm performance on the data set was obtained by using
the reported LR functions to predict ISS> 15 and comparing
it with the FE-MB database results for OT and UT. The pre-
viously reported performance on the NASS CDS data set was
also included for further comparison (Figure 9).

The FE-MB database and NASS CDS OT performance for
the LR based algorithm was largely similar, except for the
rear impact model OT rate, where a large discrepancy of more
than 40% was present. The obtained UT rates for the LR
based algorithms were significantly lower when evaluated on
the FE-MB database.

4 Discussion

Rapid, accurate and reliable occupant injury risk prediction
remains a necessary and challenging problem for active vehi-
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Figure 9 (Color online) Over-triage and under-triage comparison for a state-of-the-art injury prediction model [7], as well as the LPM model, on the FE-MB
validation subset and NASS CDS data set with different risk thresholds (RT). From left to right: (a) frontal, (b) rear, (c) near side and (d) far side.

cle safety systems. Current injury risk estimation algorithms
mostly rely on probabilistic tools using a portion of the avail-
able occupant and vehicle information, and lack robust un-

certainty quantification. The aim of this study was to de-
velop a framework that uses simplified deterministic models
with uncertainty quantification to predict occupant injury risk
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levels based on occupant morphology, posture, vehicle inte-
rior and collision deceleration time-history information. This
was demonstrated with new LPM designs that were tuned
with GA optimization and evaluated for prediction uncer-
tainty with arbitrary and bootstrapped PCEs.

4.1 Vehicle collision and occupant injury database vali-
dation

The FE vehicle collision and FE-MB occupant injury
databases were validated with experimental crash test results
from the IIHS and NHTSA to demonstrate their credibility
for training occupant LPMs. The two databases were devel-
oped on different platforms to reduce the computational bur-
den. The validation case for the vehicle collision database
setup showed moderate to good similarity between the exper-
imental and simulation results in vehicle response and struc-
tural deformation. The observed peaks in acceleration around
10 ms in the simulation results are likely the result of having
increased the stiffness of the FE model seat foam materials,
to prevent the occurrence of negative volumes, which would
result in simulation failure. For the FE-MB occupant injury
database, all of the injury measures were predicted within ac-
ceptable bounds for injury level prediction for the frontal and
side impact crash tests. A 178 N neck shear force discrep-
ancy for the rear crash test was most likely caused by the
simplified representation of the driver seat head rest. For the
occupant injury database, the side impact collisions resulted
in the highest severity injury levels, which was due to the ab-
sence of side airbags. The crash test vehicle has been shown
to perform poorly without side airbags in side collisions, as
evidenced by a crash test performed by the IIHS, where the
simulated occupant HIC value exceeded 2000 [35]. Lower
extremity injuries were also recorded and found to be mini-
mal for the 50th percentile male occupant, which agrees well
with existing experimental results [34].

4.2 LPM performance evaluation

The four LPMs exhibited moderate to good prediction accu-
racy on their respective validation sets except for the neck in-
jury prediction of the far side impact. Ccomp and VCabd were
not discretized into six severity levels, since such AIS prob-
ability functions have not been found or fully validated yet.
This reduced discretization meant that the LPMs were able
to achieve injury severity level prediction errors that did not
range beyond zero. The LPM that obtained the lowest ISS
prediction errors was the rear impact model (µe=5%), fol-
lowed by the frontal (µe=6%), near side (µe=11%) and far
side (µe=11%) models. Occupant injury response is highly
dependent on how the human body interacts with its envi-

ronment. Hence, a small off-set in impact location or timing,
heavily influences occupant injury risk. As a result, larger oc-
cupant motions result in larger errors in injury risk prediction
for LPMs. This can be seen with the poor prediction accu-
racy of neck injury of the far side impact LPM. Note that this
did not translate to poor triage rates for far side collisions,
since the error is mainly between AIS severity levels 3 and
5, both commonly observed for IS S > 15. Previous stud-
ies on initial occupant posture have also shown that a slight
change in posture can lead to significant changes in injury
outcome [20]. The obtained occupant stiffness and damping
coefficients were coherent between different impact modes
for identical vehicle interior elements and occupant joints, but
differed in cases where occupant body joints exhibit motion-
dependent stiffness and damping. To illustrate, the neck stiff-
ness and damping were higher (by 7 N

m and 4.5 Ns
m , respec-

tively) in dorsi-flexion than in flexion, which agrees with ex-
isting research [41]. The LPMs were found to be capable
of simulating occupant injury under low oblique impact an-
gles, where occupant motion could still be simplified to a
two dimensional problem. Seventy-one percent of vehicle-
to-vehicle collisions are within a 30◦ range of the principal
directions of impact [42]. Thus, a large portion of vehicle col-
lisions could be simulated with these simplified deterministic
models. Finally, the required computational time for a 200
ms LPM collision simulation on an Intel i7-8550U 1.8 GHz
26.43 Giga FLoating point Operations Per Second (GFLOPS)
platform required less than 10 s. Current state-of-the-art vehi-
cle computational systems, like the 2019 Nvidia Drive Xavier
series, can deliver 5 FP16 TFLOPS of performance [43].

4.3 Prediction uncertainty evaluation

Due to the limited sample size, which is common in au-
tomotive crash safety research, typical uncertainty quantifi-
cation techniques, such as Monte Carlo simulation, are not
feasible. At the same time, simply computing the statisti-
cal moments of a small sample increases the probability of
poor out-of-sample performance. This is why, for this study,
prediction uncertainty for individual LPMs under inaccurate
occupant posture and seating position inputs was evaluated
with arbitrary PCEs. The second order statistical moment
were minimal: 5.5%±2.7% and 3.1%±3.0% for OT rate and
UT rate, respectively (Figure 8). The near side LPM was
not heavily affected by the inaccurate measurement inputs
of occupant posture and seating position, as indicated by the
low standard deviations. Consequently, the achieved degree
of generalization of the PCE was also lower (LOOOT=0.37;
LOOUT=0.74). The bootstrapped PCEs showed good agree-
ment with the arbitrary PCEs, as shown for the frontal case in
Figure 8. The aPCE predictions were within the 95% bPCE
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confidence bounds for most of the validation basis. The re-
sults demonstrated that a combined aPCE and bPCE uncer-
tainty quantification approach is capable of providing model
injury risk prediction reliability estimates. This method could
be extended to existing probabilistic approaches, such as LR,
to provide injury severity prediction confidence bounds to
EMS for improved triage decision.

4.4 Triage performance evaluation and comparison

To evaluate the designed LPMs as computationally efficient
tool for improved injury level prediction, they were tested
on the validated FE-MB occupant injury database within the
impact angle coverage of all LPMs and compared with a
state-of-the-art LR based algorithm. A real-world accident
database was not used for further comparison given the lim-
ited number of recorded MVCs involving the studied vehicle
model, i.e., Toyota Yaris. It should also be noted that the
far side collision database was not validated experimentally,
due to the lack of existing far side crash tests for the Toyota
Yaris vehicle, meaning that the far side triage results should
be taken with caution. Thus, the comparison can be used on a
relative basis, but error rates should not be taken in absolute
terms. The obtained improvements in OT rates are partly due
to the use of a deterministic model, where occupant, restraint
and vehicle related predictors can be taken into account in
more detail. Moreover, the predictions include a whole body
level injury risk estimate and body part specific injury risk
estimates. The UT rate was non zero, but remained below
8% for all impact modes. Since OT and UT rates depend
highly on the database on which they are evaluated, reported
performance on the NASS CDS database was also compared.
The OT rate was generally similar for the existing LR algo-
rithms on the FE-MB database and the NASS CDS database,
except for rear-end collisions. This is probably due to the ab-
sence of higher severity rear-end collisions in the NASS CDS
database, resulting in an over-estimation of injury severity.
The UT rate differed significantly between the two data sets.
LPMs are incapable of accounting for internal and tissue level
injuries. This is because injury measures to estimate the prob-
ability of a certain AIS severity levels currently do not exist
[44]. As a result, they cannot be taken into account, mean-
ing that the LPM will tend to underestimate injury severity, if
these types of injuries are present.

4.5 Limitations and future research

Several limitations of this study should be noted. First and
foremost, the use of LPMs offers high computational effi-
ciency, especially for demonstrating the proposed framework
of injury prediction on-board, yet remains simplified with re-

gard to the structural characteristics and the interaction of the
vehicle and human models. For example, the detailed interac-
tions between the occupant with the interior largely affect the
resultant injury risks and are beyond the modeling capability
of LPMs. More biofidelic FE human body models, which al-
low injury evaluation and assessment up to the tissue level,
could be adopted for more accurate estimation of the loads in
crash when more on-board computational resources will be
available. Secondly, the GA tuning procedure of the LPMs is
time consuming with no assurance of obtaining global min-
ima. The developed LPMs for this study have been validated
for Toyota Yaris under low oblique impact angles. Although
such boundary conditions were assumed to be representative
of the majority of accident scenarios of a typical passenger
car, the results do not fully reflect the real-world variance on
vehicle models and human factors in collisions. Also note
that since no experimental far side collision of the Yaris ve-
hicle was available, the far side LPM could not be validated.
Next, because of the exploratory nature of this study, only a
single vehicle model was used. Further validation under dif-
ferent vehicle models, which are representative of real world
MVCs, is necessary for a direct comparison between exist-
ing probabilistic algorithms and the developed deterministic
ones. Furthermore, the proposed framework was validated
on the large-scale FE-MB database instead of a real-world
database, such as NASS CDS. This decision was made given
the fact that the real-world NASS CDS data set does not con-
tain any high severity injury Toyota Yaris collisions; and can-
not cover the complete simulation scope of the developed
LPMs. Hence, further validation of this methodology with
a different vehicle that is well represented within the NASS
CDS data set is also recommended. As a result, such a deter-
ministic approach remains vehicle-model specific, since opti-
mization and validation would have to be performed for each
vehicle type in order to provide a verified and validated alter-
native to LR based prediction.

Despite these current limitations, the enhancing capabili-
ties that rapid deterministic models offer, in parallel to a LR
based injury risk estimation algorithm, are significant (Ta-
ble 1). It would enable body level injury prediction that
is vehicle- and occupant-specific at limited computational
costs. To this end, proposed further development of this
framework include: validating the approach on a real-world
or high-fidelity FEM database, adding side collision occu-
pant airbags, modeling multiple occupants and including age
specific risk injury criteria to account for occupant age. Fi-
nally, more severe lower extremity injuries are common in
the NASS CDS data set, hence, it is recommended to include
this type of injury in future studies when considering other
vehicle models.
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5 Conclusions

The present study developed a computational framework that
uses rapid and AIS-level accurate deterministic models with
PCE uncertainty quantification to enhance existing injury risk
estimation algorithms. The advantage of such an approach
compared to state-of-the-art logistic regression based algo-
rithms was evidenced by the improved OT rates and under
8% UT rates achieved on the numerical collision database.
The present results suggest that deterministic LPMs may lead
to comparable triage rates of current post-collision injury risk
estimation algorithms at low computational cost by providing
occupant, restraint system, vehicle interior and crash pulse
specific occupant injury risk estimates. Further validation
with other data sets and vehicle models is necessary when
real-world data sets will be available.

This study provides an alternative and computation-
ally feasible method of injury risk prediction that is non-
probabilistic for advanced vehicle safety systems. With high
computational efficiency and flexibility of parameter adjust-
ment, and with further development and validation, it may
offer an alternative to injury risk prediction algorithms and
decision making for implementation into vehicle safety sys-
tems.
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