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Abstract— This paper presents a measurement dissemination-
based distributed Bayesian filtering (DBF) approach for a
network of unmanned ground vehicles (UGVs). The DBF uti-
lizes the Latest-In-and-Full-Out (LIFO) local exchange protocol
of sensor measurements for data communication within the
network. Different from existing statistics dissemination-based
approaches that transmit posterior distributions or likelihood
functions, each UGV under LIFO only exchanges with neigh-
boring UGVs a full communication buffer consisting of latest
available measurements, which significantly reduces the trans-
mission burden between each pair of UGVs to scale linearly
with the size of the network. Under the condition of fixed
and undirected topology, LIFO can guarantee non-intermittent
dissemination of all measurements over the network within
a finite time. Two types of LIFO-based DBF algorithms are
presented to estimate individual probability density function
(PDF) for a static target and for a moving target, respectively.
For the static target, each UGV locally fuses the newly received
measurements while for the moving target, a set of measurement
history is stored and sequentially fused. The consistency of
LIFO-based DBF is proved that the estimated target position
converges in probability to the true position. The effectiveness
of this method is demonstrated by comparing with a consensus-
based distributed filter and a centralized filter in the simulation
of target localization.

I. INTRODUCTION

Distributed filtering that focuses on using a group of
networked UGVs to collectively infer environment status has
been used for various applications, such as intruder detec-
tion [1], pedestrian tracking [2] and micro-environmental
monitoring [3]. Several techniques have been developed
for distributed filtering, including the distributed Kalman
filter (DKF) [4], distributed extended Kalman filter [5], and
distributed particle filter [6]. As a generic filtering scheme
for nonlinear systems with arbitrary noise distributions, the
distributed Bayesian filter (DBF) has received increasing
interest during past years [7], [8]. This work focuses on a
communication-efficient DBF for networked UGVs.

The design of distributed filtering algorithms depends on
the communication topology of multi-UGV network, which
can be classified into two types: fusion center (FC)-based
and neighborhood (NB)-based. In FC-based approaches, each
UGV uses a filter to estimate local statistics of environment
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status based on its own measurement. The local statistics is
then transmitted to a single FC, where a global posterior
distribution (or statistical moments) is calculated at each
filtering cycle after receiving all local information [9]. In
NB-based approaches, a set of UGVs execute distributed
filters to estimate individual posterior distribution. Consensus
of individual estimates is achieved by solely communicating
statistics and/or observations within local neighbors of these
UGVs. The NB-based methods have become popular in
recent years since such approaches do not require complex
routing protocols or global knowledge of the network and
therefore are robust to changes in network topology and to
link failures.

So far, most studies on NB-based distributed filtering
have mainly focused on the so-called statistics dissemination
strategy that each UGV actually exchanges statistics, in-
cluding posterior distributions and likelihood functions, with
neighboring UGVs [10]. For example, Sheng et al. (2005)
proposed a multiple leader-based distributed particle filter for
target tracking [11]. Sensor group leaders run particle filters
and exchange particle information with each other. Hlinka et
al. (2012) proposed a distributed method for computing an
approximation of the joint (all-sensors) likelihood function
by means of weighted-linear-average consensus algorithm
[12]. Saptarshi et al. (2014) presented a Bayesian consensus
filter that uses logarithmic opinion pool for fusing posterior
distributions of the tracked target [7].

Despite the popularity of statistics dissemination strategy,
exchanging statistics can consume high communication re-
sources. One promising remedy is to disseminate measure-
ment instead of statistics among neighbors, which, however,
has not been fully exploited. One pioneering work was done
by Coates et al. (2004), who used adaptive encoding of
measurements to minimize communication overhead [13].
Ribeiro et al. (2006) exchanged quantized measurements
along with error-variance limits considering more pragmatic
signal models [14]. A recent work was conducted by Djuric
et al. (2011), who proposed to broadcast raw measurements
to other agents, and therefore each UGV has a complete
set of measurements of other UGVs for executing particle
filtering [15]. A shortcoming of aforementioned works is that
their communication topologies are assumed to be a complete
graph that every pair of distinct UGVs is directly connected
by a unique edge, which is not always feasible in reality.

This paper extends existing works by introducing a Latest-
In-and-Full-Out (LIFO) protocol into distributed Bayesian
filters (DBF) for networked UGVs. Each UGV is only
allowed to broadcast measurements to its neighbors by using
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single-hopping and then implements individual Bayesian
filter locally after receiving transmitted measurements. The
main benefit of using LIFO is on the reduction of communi-
cation burden, with the transmission data volume scaling lin-
early with the UGV number, while a statistics dissemination-
based strategy can suffer from the order of environment size.
The proposed LIFO-based DBF has following properties:
(1) For a fixed and undirected network, LIFO guarantees
the global dissemination of measurements over the network
in a non-intermittent manner. (2) The corresponding DBF
ensures the consistency of the estimated target position, i.e.,
the estimated position converges in probability to the true
target position as measurements are continually fused.

The rest of this paper is organized as follows: The problem
of distributed Bayesian filtering is formulated in Section II.
The LIFO-based DBF algorithm is described in Section III,
followed by the proof of consistency in Section IV. Simula-
tion results are presented in Section V.

II. PROBLEM FORMULATION

Consider a network of N UGVs in a bounded two-
dimensional space S. The aim of UGVs is to efficiently
localize a target in S. For the purpose of simplicity, each
UGV is assumed to be equipped with a binary sensor for
environmental perception. Due to the limit of communication
range, each UGV can only exchange observations with its
neighbors. The Bayesian filter is run locally on each UGV
based on its own and received observations via single-
hopping to estimate true position of target.

A. Target and Sensor Model

The target motion takes a discrete-time model that can be
described by

xgk+1 = f(xgk, w
g
k), (1)

where xgk ∈ R2 denotes the target position at time k and wgk
is the process noise.

Each UGV’s sensor constantly measures the target position
and the measurement by ith UGV is modeled as

zik =

{
1 hi(xgk;xik) ≥ γ
0 hi(xgk;xik) < γ

,

where zik denotes the measurement by the ith sensor at time
k; hi is the sensor property that characterizes the target
position. For example, hi can represent the power received by
an ultrasonic sensor. When the received signal yik is greater
than a threshold γ, indicating that the target is detected, the
sensor returns 1; otherwise, 0 is returned by the sensor.

We use a likelihood function to represent the probability
of the target being detected by the binary sensor:

pi1,k = P (zik = 1|xgk;xik) ∈ [0, 1] , xgk ∈ S, (2)

where xik is the ith sensor’s position. Correspondingly, the
likelihood function for no target being detected is:

pi0,k = P (zik = 0|xgk;xik) = 1− pi1,k. (3)

The combination of Eq. (2) and Eq. (3) forms the prob-
abilistic model for a binary sensor, and the measurement
follows a Bernoulli distribution B(1, pi1,k), i.e.

P (zik|xg;xik)1 = (pi1,k)z
i
k (pi0,k)1−zj

l .

The commonly used likelihood functions for binary sen-
sors include the Gaussian function [16], [17] and step func-
tion [18]. For example, a Guassian function sensor model
[19] is defined as

pi1,k = e−
1
2 (xgk−x

i
k)TΣ−1(xgk−x

i
k), (4)

where Σ is a positive definite covariance matrix characteriz-
ing the sensing range and uncertainty.

Remark 1: Given the knowledge of current target and
UGV positions, current observation by each UGV can be
considered conditionally independent from its own past ob-
servations and those by other UGVs [20].

B. Graphical Model of Communication Topology
The UGV network is assumed to be connected, i.e., there

exists a path, either direct or indirect, between every pair
of UGVs. Under this assumption, consider an undirected
and fixed graph G = (V,E), where V = {1, . . . , N}
represents the index set of UGVs and E = V × V denotes
the edge set. The adjacency matrix A =

[
A(ij)

]
describes

the communication topology of G:

A(ij) =

{
1 if (i, j) ∈ E
0 if (i, j) /∈ E

,

where A(ij) denotes the entity of adjacency matrix. The
notation A(ij) = 1 indicates that a communication link
exists between ith and jth UGV and A(ij) = 0 indicates
no communication between them.

The direct neighborhood of ith UGV is defined as Ni ={
j|A(ij) = 1,∀j ∈ {1, . . . , N}

}
. All the UGVs in Ni can

directly exchange information with ith UGV in one step. We
also define another set Qi, called available neighborhood,
that contains indices of UGVs whose observations can be
received by the ith UGV within single or multiple steps. Note
that Ni ⊆ Qi.

C. Distributed Bayesian Filter for Multiple UGVs

The generic distributed Bayesian filter (DBF) is introduced
in this section. Each UGV has its individual estimation of
probability density function (PDF) of target position, called
individual PDF. The individual PDF of ith UGV at time
k is defined as P ipdf (xgk|zi1:k), where zi1:k denotes the set
of measurements by ith UGV and by UGVs in Qi that are
transmitted to ith UGV by time k. The individual PDF is
initialized by using all available prior information includ-
ing past experience and environmental knowledge. Under
the framework of DBF, the individual PDF is recursively
estimated by two steps, i.e., prediction step and updating
step, based on observations of ith UGV and UGVs in Qi.

1For the purpose of simplicity, we will not explicitly write xik in the
sensor model for the rest of the paper.
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Fig. 1: Example of LIFO with three UGVs using a line
communication topology. UGVs send their own CBs and
receive CBs from neighboring UGVs. CBs are updated using
Algorithm 1.

1) Prediction: At time k, the prior individual PDF
P ipdf (xgk−1|zi1:k−1) is first predicted forward by using the
Chapman-Kolmogorov equation:

P ipdf (xgk|z
i
1:k−1) =

∫
P (xgk|x

g
k−1)P ipdf (xgk−1|z

i
1:k−1)dxgk−1 (5)

where P (xgk|x
g
k−1) is a Markov motion model of the target

defined by Eq. (1), which maps the state transition probability
of the target. For a static target, its Markov motion model is
simplified to be

P (xgk|x
g
k−1) =

{
1 if xgk = xgk−1

0 if xgk 6= xgk−1

.

2) Updating: The ith individual PDF is then updated by
Bayes’ theorem using the set of newly received observations
at time k, zik:

P ipdf (xgk|z
i
1:k) = KiP

i
pdf (xgk|z

i
1:k−1)P (zik|xgk) (6)

where Ki is a normalization factor, given by:

Ki = 1/

∫
P ipdf (xgk|z

i
1:k−1)P (zik|xgk)dxgk

and P ipdf (xgk|zi1:k) is called posterior individual PDF;
P (zik|x

g
k) comes from the sensor model Eq. (2) and Eq. (3).

III. DISTRIBUTED BAYESIAN FILTER VIA
LATEST-IN-AND-FULL-OUT PROTOCOL

This study proposes a Latest-In-and-Full-Out (LIFO) pro-
tocol for observation exchange and derives two correspond-
ing distributed Bayesian filtering (DBF) algorithms, shorted
as LIFO-DBF. The data communication in LIFO is syn-
chronized with the execution of DBF. In each step, LIFO
only allows single-hopping communication within the direct
neighborhood, but is able to broadcast observations of each
UGV to any other agent after a finite number of steps. The in-
dividual PDF is forward predicted and updated in DBF after
each LIFO cycle. The theoretical analysis show that LIFO-
DBF can ensure the consistency and consensus of distributed
estimation while requiring much less communication burden
than statistics dissemination-based methods.

Algorithm 1 LIFO Protocol

(1) Initialization: The CB of ith UGV is initialized when
k = 0:

zj
kij

= ∅, kij = 0, j = 1, . . . , N

(2) At kth step for ith UGV :
(2.1) Receiving Step:

The ith UGV receives all CBs of its direct neighbor-
hood Ni, each of which corresponds to the (k-1)-step CB
of a UGV in Ni. The received CB from lth (l ∈ Ni) UGV
is denoted as

zCB,lk−1 =
[
z1

(k−1)l1
, . . . , zN(k−1)lN

]
, l ∈ Ni

(2.2) Observation Step:
The ith UGV updates zj

kij
(j = i) by its own obser-

vation at current step:

zj
kij

= zik, k
i
j = k, if j = i.

(2.3) Comparison Step:
The ith UGV updates other elements of its own CB,

i.e., zj
kij

(j 6= i), by selecting the latest information among
all received CBs from Ni. For all j 6= i,

llatest = argmax
l∈Ni, i

{
(k − 1)ij , (k − 1)lj

}
zj
kij

= zj
(k−1)

llatest
j

, kij = (k − 1)llatest
j

(2.4) Sending Step:
The ith UGV broadcasts its updated CB to all of its

neighbors defined in Ni.
(3) k ← k + 1 until stop

A. Latest-In-and-Full-Out (LIFO) Protocol

Under LIFO, each UGV contains a communication buffer
(CB) to store its latest knowledge of observations of all
UGVs:

zCB,ik =
[
z1
ki1
, . . . , zNkiN

, x1
ki1
, . . . , xNkiN

]
where zj

kij
represents the observation made by jth UGV

at time kij and xj
kij

denotes the sensor position when the

associated measurement zj
kij

is made. We will not explicitly

write
[
x1
ki1
, . . . , xN

kiN

]
in zCB,ik for the rest of the paper for

the purpose of simplicity. Note that under LIFO, Qi =
{1, . . . , N} \ {i}, which will be proved in Corollary 1. At
time k, zj

kij
is received and stored in ith UGV CB, in which

kij is the latest observation time of jth UGV available to
ith UGV. Due to the communication delay, kij < k, ∀j 6= i
and kii = k always holds. The LIFO protocol is stated in
Algorithm 1.

Fig. 1 illustrates the LIFO cycles with 3 UGVs using a
line topology. For general graphs, we have the following
proposition:
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Fig. 2: Example of LIFO-DBF for 1st UGV at time k.
Networked UGVs take a line topology. The stored individual
PDF is P 1

pdf (k−N). The UGV first calculates P 1
virt(k−N+

1) using DBF and stores it as P 1
pdf (k −N + 1). Repeating

DBF until obtaining P 1
pdf (k), which is then used as the target

PDF estimation of 1st UGV at time k. In this example,
Ω1
ξ = {1, 2, . . . , N + 1− ξ}, ξ = 1, . . . , N .

Proposition 1: For a fixed and undirected network of
N UGVs, the latest observations of ith and jth UGV are
exchanged via the shortest path(s) under LIFO. The delay
of exchange τi,j is equivalent to the length of the shortest
path(s) between them.

Proof: Since the network is connected, there exists a
minimum integer τi,j such that Aτi,j(i,j) > 0 and τi,j is the
length of a shortest path between ith and jth UGV. Under
the LIFO, the latest observation of ith UGV will always be
received and then propagated in the communication buffer of
the UGVs on a shortest path. Therefore, the latest observation
that jth UGV receives from ith UGV is delayed by τi,j
iterations of communication.

Corollary 1: For the same topology assumption in Propo-
sition 1, all elements in zCB,ik under LIFO become filled
when k ≥ N , i.e., Qi = {1, . . . , N} \ {i}.

Corollary 2: For the same topology assumption in Propo-
sition 1, once all elements in zCB,ik are filled, the updating
of each element is non-intermittent.

Compared to statistics dissemination, LIFO is generally
more communication-efficient for distributed filtering. To be
specific, we consider an M ×M grid environment with a
network of N UGVs. The transmitted data of LIFO between
each pair of UGVs are only the CB of each UGV and
the corresponding UGV positions where observations were
made, the size of which is O(N), scaling linearly with
UGV number. On the contrary, an unparameterized posterior
distribution or likelihood function is usually represented by
an M ×M matrix [21]. Therefore, the size of transmitted
data for a statistics dissemination approach is O(M2), on
the order of environmental size. Since M is generally much
larger than N in applications such as target localization,
LIFO requires much less communication resources.

Algorithm 2 LIFO-DBF Algorithm

For ith UGV at kth step:
After updating CB by Algorithm 1,
(1) The stored individual PDF for time (k −N) is:

P ipdf (xgk−N |z
1
1:k−N , . . . , z

N
1:k−N )

(2) Initialize a virtual PDF by assigning the individual
PDF to it:

P ivirt(x
g
k−N ) = P ipdf (xgk−N |z

1
1:k−N , . . . , z

N
1:k−N )

(3) From ξ = 1 to N , iteratively repeat two steps of
Bayesian filtering:
(3.1) Prediction

P previrt(x
g
k−N+ξ)

=

∫
P (xgk−N+ξ|x

g
k−N+ξ−1)P ivirt(x

g
k−N+ξ−1)dxgk−N+ξ−1

(3.2) Updating

P ivirt(x
g
k−N+ξ) = KξP

pre
virt(x

g
k−N+ξ)

∏
j∈Ωi

ξ

P (zjk−N+ξ|x
g
k−N+ξ)

Kξ = 1/

∫
P previrt(x

g
k−N+ξ)

∏
j∈Ωi

ξ

P (zjk−N+ξ|x
g
k−N+ξ)dx

g
k−N+ξ

(3.3) When ξ = 1, store the virtual PDF as the individual
PDF for time (k −N + 1)

P ipdf (xgk−N+1|z
1
1:k−N+1, . . . , z

N
1:k−N+1) = P ivirt(x

g
k−N+1).

(4) Individual PDF of ith UGV at time k is
P ipdf (xgk|zi1:k) = P ivirt(x

g
k).

B. Algorithm of LIFO-DBF for Static Target
This section derives the LIFO-DBF algorithm for local-

izing a static target. It is assumed that, all UGV know the
sensor models of other UGVs. Each UGV stores last-step
individual PDF, i.e., P ipdf (xg|zi1:k−1). According to Corol-

lary 2, zik = zCB,ik and zi1:k = zCB,i1:k =
[
z1

1:ki1
, . . . , zN

1:kiN

]
.

The assumption of static target can simplify the Bayesian
filter as the prediction step becomes unnecessary. Therefore,
the ith individual PDF is only updated by

P ipdf (xg|zi1:k) = KiP
i
pdf (xgk|z

i
1:k−1)P (zik|xgk)

= KiP
i
pdf (xg|zi1:k−1)

N∏
j=1

P (zj
kij
|xg) (7)

where

Ki = 1/

∫
P ipdf (xg|zi1:k−1)

N∏
j=1

P (zj
kij
|xg)dxg

C. Algorithm of LIFO-DBF for Moving Target

This section derives the LIFO-DBF for localizing a mov-
ing target. Instead of storing last-step PDF, at time k each
UGV maintains an individual PDF of time (k − N) and
a collection of historical observations, called the record
set, from time (k − N + 1) to k. The ith individual PDF
is then alternatively predicted and updated by using the
aforementioned Bayesian filter (Eq. (5) and Eq. (6)) from
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(k−N) to k. Fig. 2 illustrates the LIFO-DBF procedure for
the 1st UGV as an example. Let Ωiξ (ξ = 1, . . . , N) denote
the index set of UGVs whose observation at time (k−N+ξ)
is stored in ith UGV’s record set. The LIFO-DBF algorithm
for moving target is then stated in Algorithm 2.

IV. PROOF OF CONSISTENCY

This section proves the consistency of LIFO-DBF for
localizing a static target using static UGVs with heteroge-
neous sensors. The proof of LIFO-DBF using moving UGVs
is similar but requires extra algebraic manipulation, and is
omitted due to space limit. Assume S is finite and xg

∗
is

the true position of target, the consistency of LIFO-DBF for
static UGVs is stated as:

Theorem 1: When UGVs are static, the estimated target
position converges to the true position of target in probability
using LIFO-DBF, i.e.,

lim
k→∞

P (xg = xg
∗
|zi1:k) = 1, i = 1, . . . , N.

Proof: Considering the conditional independence of
observations given xg ∈ S, the batch form of DBF is:

P ipdf (xg|zi1:k) = P ipdf (xg|z1
1:ki1

, . . . , zN1:ki
N

)

=

P ipdf (xg)
N∏
j=1

kij∏
l=1

P (zjl |x
g)

∑
xg∈S

P ipdf (xg)
N∏
j=1

kij∏
l=1

P (zjl |xg)

,

where P ipdf (xg) is ith UGV’s initial individual PDF.

Comparing P ipdf (xg|zi1:k) with P ipdf (xg
∗ |zi1:k) yields

P ipdf (xg|zi1:k)

P ipdf (xg∗ |zi1:k)
=

P ipdf (xg)
N∏
j=1

kij∏
l=1

P (zjl |x
g)

P ipdf (xg∗)
N∏
j=1

kij∏
l=1

P (zjl |xg
∗)

. (8)

Take the logarithm of Eq. (8) and average it over k steps:

1

k
ln

P ipdf (xg|zi1:k)

P ipdf (xg∗ |zi1:k)
=

1

k
ln

P ipdf (xg)

P ipdf (xg∗)
+

N∑
j=1

1

k

kij∑
l=1

ln
P (zjl |x

g)

P (zjl |xg
∗)
.

(9)
Since P ipdf (xg) and P ipdf (xg

∗
) are bounded,

lim
k→∞

1
k ln

P ipdf (xg)

P ipdf (xg∗ )
= 0. Define pj

∗

1 = P (zjl = 1|xg
∗
)and

pj1 = P (zjl = 1|xg). The law of large numbers yields

1
k

kij∑
l=1

zjl
P−→ pj

∗

1 , and 1
k

(kij −
kij∑
l=1

zjl )
P−→ 1− pj

∗

1 , where “ P−→”

denotes “convergence in probability”. Then,

1

k

kj∑
l=1

ln
P (zjl |x

g)

P (zjl |xg
∗)

P−→ pj
∗

1 ln
pj1
pj

∗
1

+(1−pj
∗

1 ) ln
1− pj1
1− pj∗1

. (10)

Note that the right-hand side of Eq. (10) achieves maximum
value 0 if and only if pj1 = pj

∗

1 .

Define c(xg) =
N∑
j=1

pj
∗

1 ln
p
j
1

p
j∗
1

+ (1 − pj
∗

1 ) ln
1−pj1
1−pj

∗
1

. Consid-

ering Eq. (10), the limit of Eq. (9) is

1

k
ln

P ipdf (xg|zi1:k)

P ipdf (xg∗ |zi1:k)

P−→ c(xg) (11)

It follows from Eq. (11) that

P ipdf (xg|zi1:k)

P ipdf (xg∗ |zi1:k)ec(xg)k

P−→ 1. (12)

Define the set X̄T = S \
{
xg

∗}
and cM = max

xg∈X̄T
c(xg).

Then cM < 0. Summing Eq. (12) over X̄T yields∑
xg∈X̄T

P ipdf (xg|zi1:k)e[cM−c(xg)]k

P ipdf (xg∗ |zi1:k)ecMk

P−→ |X̄T |, (13)

where |X̄T | denotes the cardinality of X̄T .
Since cM < 0, P ipdf (xg

∗ |zi1:k)ecMk−→0 and Eq. (13)
implies

∑
xg∈X̄T

P ipdf (xg|zi1:k)e[cM−c(xg)]k P−→ 0.

Therefore
∑

xg∈X̄T
P ipdf (xg|zi1:k)

P−→ 0, and it follows that

lim
k→∞

P (xg = xg
∗
|zi1:k) = 1− lim

k→∞

∑
xg∈X̄T

P ipdf (xg|zi1:k) = 1.

V. SIMULATION

This section simulates a scenario of target localization
to evaluate the effectiveness of LIFO-DBF. The networked
UGVs take a ring communication topology that each UGV
can communicate with two fixed neighbors. The probabilistic
sensor model takes the form defined in Eq. (4).

The LIFO-DBF is compared with two commonly adopted
approaches in multi-agent filtering: the consensus-based dis-
tributed filtering (CbDF) method and the centralized filter-
ing (CF) method. The CbDF requires UGVs to continu-
ally exchange their individual PDFs with direct neighbors,
computing the average of all received and its own target
PDFs. Multiple rounds of communication and averaging are
conducted at each time step to ensure the convergence of
each UGV’s individual PDFs. The CF assumes a central
unit that can constantly receive and fuse all UGVs’ latest
observations into a single PDF. 10 test trials with randomly
generated initial target positions are run and each trial is
terminated after 50 time steps. The average error between the
estimated and true target position and the average entropy of
individual PDFs of all 10 trials are compared.

Figures 3a to 3d shows the evolution of a UGV’s indi-
vidual PDF. Each UGV moves along a pre-defined circular
trajectory. The target motion is modeled as a single-integrator
without process noise. The LIFO-DBF described in Sec-
tion III-C is utilized for target localization. It can be noticed
that the individual PDF asymptotically concentrates to the
true target location. Figs. 3e and 3f compares LIFO-DBF
with CbDF and CF2. Unsurprisingly, the CF achieves the
best performance in terms of both small position estimation
error and fast reduction of entropy. This happens because
the central unit has access to the latest observations of all
UGVs, thus making most use of all available information. It
is worth noting that, LIFO-DBF achieves similar asymptotic

2Since the average estimation errors of all six UGVs’ LIFO-DBF are very
similar, we only include three UGVs to make figures easier to read.
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Fig. 3: (a)-(d) The individual PDF of a UGV (red square)
at different times. The stars represent other UGVs. The
black cross shows the target position. (e) Average position
estimation errors of the 1st, 3rd and 5th UGV’s LIFO-DBF,
CbDF and CF. (f) Average entropy of individual PDFs.

performance as the CF, both in position estimation error
and entropy reduction; this is achieved even though each
UGV only communicates with its two neighboring UGVs.
CbDF has the slowest entropy reduction among all three
filtering approaches. We note that CbDF requires multiple
rounds of exchanging individual PDFs, which incurs much
higher communication burden than LIFO-DBF at each time
step. Considering the small difference in position estimation
error and significantly faster entropy reduction, LIFO-DBF
is preferable over CbDF for moving target scenario.

VI. CONCLUSION

This paper presents a measurement dissemination-based
distributed Bayesian filtering (DBF) approach for a multi-
UGV network, utilizing the Latest-In-and-Full-Out (LIFO)
protocol for measurement exchange. By exchanging full
communication buffers among neighboring UGVs, LIFO
significantly reduces the transmission burden between each
pair of UGVs. It should be noted that LIFO is a general mea-
surement exchange protocol and thus applicable to various
sorts of sensors. Two types of LIFO-based DBF algorithms
are proposed to estimate individual PDFs for a static target
and a moving target, respectively and its consistency property
is proved. Future work includes considering the imperfect
communication between UGVs and applying the proposed
method for distributed localization and mapping.
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