
Continuous Decision Making for On-road Autonomous Driving under
Uncertain and Interactive Environments

Jianyu Chen1, Chen Tang1, Long Xin1,2, Shengbo Eben Li2 and Masayoshi Tomizuka1

Abstract— Although autonomous driving techniques have
achieved great improvements, challenges still exist in decision
making for variety of different scenarios under uncertain and
interactive environments. A good decision maker must satisfy
the following requirements: (1) Be in a generic and unified form
to cover as more scenarios as possible. (2) Be able to interact
properly with other moving obstacles under the uncertainty of
their motions. In this paper, the continuous decision making
(CDM) framework is proposed to formulate different driving
scenarios in a unified way, which encodes the high level decision
making information into a continuous reference trajectory that
can be naturally combined with a lower level trajectory planner.
Within the framework, a maximum interaction defensive policy
(MIDP) is proposed, which calculates the best action to interact
with stochastic moving obstacles while guaranteeing safety. The
method is applied to a ramp merging scenario and the stochastic
behavior models of the surrounding vehicles are learned from
the NGSIM dataset. Simulations are shown to visualize and
analyze the results.

I. INTRODUCTION

In the past years, progresses in robotics and breakthroughs
in machine learning boosted the development of autonomous
driving systems. With the enhanced techniques designed
for autonomous driving, such as stable and precise vehicle
control [1], accurate perception and localization [2], and
efficient motion planning techniques [3], [4], some proto-
types developed by universities or companies have already
been demonstrated in public. People are more optimistic that
autonomous driving will become reality in the near future.

Despite the inspiring achievements, there is still a gap
between the state-of-the-art systems and a full level au-
tonomous driving system defined by SAE [5]. The challenges
mainly exist in the decision making part and they come
in two folds. First, the decision maker should be in a
generic and unified form to cover as more scenarios as
possible. Currently most autonomous driving systems are
designed on a case-by-case basis. When a new scenario is
encountered, a new specific module will be added to take
care of this scenario. However, such design mechanism lacks
the ability for generalizing to new scenarios. Moreover, the
cumulatively added modules will make it extremely difficult
to maintain the software. Second, the decision maker should
be able to interact properly with other moving obstacles
under the uncertainty of their motions. Failure cases are

1Department of Mechanical Engineering, University of California,
Berkeley, CA 94720, USA 2State Key Lab of Automotive Safety
and Energy, Department of Automotive Engineering, Tsinghua Uni-
versity, Beijing 100084, China. Correspondence to: Jianyu Chen
(jianyuchen@berkeley.edu).

This work is supported by DENSO International at America.

likely to appear when this issue is not solved well. For
example, a Google self-driving car collided with a bus in
February 2016 [6]. The Google car tried to merge left to the
lane where a bus was running on. It predicted that the bus
would yield but the bus did not.

As discussed above, we believe that full level autonomous
driving is not tractable by rule-based method [7]–[9], which
is dominated even nowadays. In highway and urban driving,
autonomous vehicles will encounter different scenarios with
different kinds of moving obstacles. It is impossible to design
specific planners for each scenario and switch among them.
Therefore, a more generic decision maker is necessary.

Efforts have been made to enable generalization in de-
cision making. For example, semantic-based methods [10],
[11] have been proposed for traffic scene modeling and high-
level maneuver planning. However, these methods, together
with the rule-based methods, can be defined as ”discrete”
decision making methods. They all output a discrete high-
level maneuver command and then let a low level planner to
execute the maneuver. This mechanism asks us to enumerate
all possible maneuvers to ensure generalization, which is also
impossible because there are infinitely many combinations of
maneuvers.

Instead of planning discrete maneuvers, some methods
such as [12], [13] plan a continuous speed profile as the
output of the decision maker. We define this kind of methods
as ”continuous” decision making and we believe they have
larger potential for generalization. Nevertheless, these meth-
ods are not able to consider lateral decisions such as lane
changing. More importantly, they do not consider motion
uncertainty of moving obstacles as well as the interaction
with them. Motions of all moving obstacles are assumed de-
terministic that are known in advance, and more specifically,
with constant speed. Mechanism to address the uncertainty
and interaction must be embedded in the framework.

There are some works to address the motion uncertainty
issue in autonomous driving. The non-conservatively defen-
sive strategy [14] enables autonomous vehicles to consider
different intentions of the surrounding vehicles and act
properly. Although it guarantees safety while preventing
overcautious behaviors, it does not consider the interaction,
e.g, the motions of others are not influenced by the host
vehicle. S. Dorsa et al [15] model other vehicles as optimal
controllers, and then use optimization to solve the best
control sequence to act. The work considers interaction with
others, but the formulated optimization problem is almost
intractable, multiple local optimums exist and it is limited to
short preview horizon given the limited computation power.

2018 IEEE Intelligent Vehicles Symposium (IV)
Changshu, Suzhou, China, June 26-30, 2018

978-1-5386-4452-2/18/$31.00 ©2018 IEEE 1651

In this paper, the continuous decision making (CDM)
method is proposed, which formulates different driving sce-
narios in a unified way. The high level decision making
information is encoded into a continuous reference trajectory
that can be naturally combined with a lower level trajectory
planner. To address the uncertainty and interaction issue, a
maximum interaction defensive policy (MIDP) is proposed,
which calculates the best action to interact with stochastic
moving obstacles while guaranteeing safety. The stochastic
models of surrounding vehicles are built and learned from
NGSIM dataset [16].

II. SYSTEM ARCHITECTURE

In this section, an overview of the system architecture is
provided. As shown in Fig.1, the system contains three main
modules: perception, motion prediction and planning. The
contributions they make to the system and the roles they
play in this paper are described in the following paragraphs.

Fig. 1. The system structure

The perception module handles sensor data processing. It
receives raw data from multiple sensors, and then processes
and transforms the data into useful information such as
position and velocity of the host and surrounding vehicles.
Then the information is passed to the motion prediction and
planning modules. In this paper, the output of the sensor data
is assumed ready to use, and the perception module will no
longer be discussed in the rest of the paper. The details of
the sensor setup of our system is described in [17].

The motion prediction module predicts the probable future
motion of the surrounding vehicles. The predicted motion
is in a stochastic form instead of a maximum likelihood
form. In other words, the future motion is represented by
a probability distribution over multiple possible trajectories
instead of a single trajectory. Furthermore, the candidate
trajectories correspond to multiple possible distinct behaviors
of the driver. The details of the motion prediction module
will be described in Section V-B.

The planning module takes inputs from both the perception
module and the motion prediction module, and outputs the
control command for the vehicle to execute. It contains three
parts: a decision maker, a local trajectory planner and a
trajectory tracking controller. The decision maker provides
high level driving strategies, which will be discussed in detail
in Section III and Section IV.

The local trajectory planner plans an optimal trajectory
considering the vehicle kinematics under the given strategy.
The tracking controller lets the vehicle track the trajectory
generated by the local trajectory planner. Their details can
be found in the previous work [18].

III. CONTINUOUS DECISION MAKING

In this section, the continuous decision making method is
introduced. The unified formulation for common driving sce-
narios is established using speed profile. Then the algorithm
to choose the best speed profile is introduced.

A. Continuous Decision Making Concept

Generally speaking, a decision maker takes the observa-
tions as input, runs the algorithm and then gives an output
as the decision result. The process can be formulated as a
function mapping the input to the output:

d = pdecision (o) (1)

where o is the the observation, which can be either single
current step or a historic sequence of observations (e.g,
position and velocity of host and surrounding vehicles).
pdecision represents the decision process and d is the decision
result.

A low-level planning and control module can be repre-
sented in a similar way as a function mapping from the
decision to the control command:

c = ppc (d) (2)

where ppc represents the process of planning and control. c is
the control command (e.g, acceleration and steering angle).

For a classic discrete autonomous driving decision maker,
d is in a discrete domain set D such that d ∈ D. Moreover,
the semantic meanings of elements in set D are driving
maneuvers such as stopping, car following, lane changing,
turn right/left and so on. This formulation not only asks us
to specify all elements in D, but also requires us to design
a specific planning and control process ppc for each d ∈ D.

A continuous decision maker, in contrast to a discrete
one, generates a continuous mapping f instead of a decision
command d:

f : [0, T]→ S (3)

where [0, T] is the time period and S is a set. If elements s in
S are constituted of unified form of states in the environment
(e.g, position and velocity), then we do not need to enumerate
all possible values of s.

Note that the mapping (3) is equal to a trajectory in
state space S. Furthermore, the classic discrete maneuver
information is contained in the homotopy of the trajectories.

B. Unified Formulation of Different Driving Scenarios

The authors believed that the decision mainly exists in the
longitudinal motion for on-road driving scenarios. Indeed,
for scenarios such as car following, stopping, lane merging,
turning and roundabout, the vehicle just need to keep the
centerline of its reference lane and no lateral decision is
needed. Note here the lateral ”decision” is different from

1652

the lateral ”motion”. We refer making a lateral decision
as to changing the reference lane. The vehicle do need to
perform some lateral motions such as avoiding the parked
vehicles (which can be handled by the low level planning and
control module), but their lateral decision (reference lane)
can remain the same. Under this definition, the overtaking
scenario, although containing significant lateral motion, can
be categorized as a longitudinal decision problem if the
vehicle is supposed to get back to its original lane after
overtaking. Therefore, the only type of lateral decision for
on-road driving is lane changing.

A speed profile is adequate to fully represent the longitu-
dinal motion, as it can be integrated to a longitudinal position
profile or differentiated to an acceleration profile. A speed
profile can be denoted as v (t) ∈ V with t ∈ [0, T], and V
is the set of feasible velocity candidates. The corresponding
longitudinal position profile can be denoted as x (t) and the
corresponding acceleration profile can be denoted as a (t).

The lateral decision can be denoted as l (t) ∈ L =
{−1, 0, 1} where l = 0 means keeping the original lane,
l = −1 means turning left and l = 1 means turning right.
Integrating the lateral decision with the longitudinal decision,
the decision mapping in (3) becomes:

f : [0, T]→ V × L (4)

Then the decision making process can be formulated as
the following optimization problem:

min
f

∫ T
t=0
{Jv (v (t), l (t)) + Ja (a (t))} dt

s.t. gv (v (t) , l (t) , t) < 0, t ∈ [0, T]
gx (x (t) , l (t) , t) < 0, t ∈ [0, T]
ga (a (t) , t) < 0, t ∈ [0, T]

(5)

where Jv and Ja represent the costs on velocity and ac-
celeration, which are mainly constituted of desired velocity
tracking costs and acceleration penalty costs. ga is the con-
straint on the acceleration profile, which can be formulated
as a bound limit a ≤ a ≤ ā. gv is the constraint on the
speed profile, which is mainly about bounding the lateral
acceleration for passenger comfort. The speed constraint will
be described in Section III-C.

The constraint on the longitudinal position profile gx is
also called the event constraint. It is mainly generated by
traffic events such as surrounding vehicles, traffic lights and
merging. We now give some examples to illustrate the event
constraint under a deterministic assumption, which means
that the future states of the traffic (e.g, positions of other
vehicles, traffic light time...) are known in advance and
deterministic. The stochastic and interactive version will be
discussed in Section IV.

Fig.2 (a) shows a ramp merging scenario where the host
vehicle tries to merge into the lane occupied by a surrounding
vehicle. Fig.2 (a) is a bird view of the scenario, where
the host vehicle is in red and the surrounding vehicle is
in yellow, x0 is longitudinal position of the merge point.
Fig.2 (c) shows the longitudinal position profile of the host
vehicle. The yellow bar represents the predicted future space

Fig. 2. Example scenarios

occupied by the surrounding vehicle, which is assumed to
maintain constant speed in this case. The yellow bar area is
not accessible when x > x0 (after finishing merging). This
split the trajectory into two homotopy classes. One class
contains the trajectories ended in the blue area, where the
blue trajectory is an example. Another class contains the
trajectories ended in the red area, with the red trajectory as
an example. Note that the two classes represent the decisions
for pass and yield respectively.

Fig.2 (b) shows a lane changing scenario where the host
vehicle (in red) tries to change the lane to the left lane which
is occupied by a surrounding vehicle (in yellow). Fig.2 (b)
is a bird view of the scenario, in this case the host vehicle
accelerates to pass the surrounding vehicle and then changes
the lane. Fig.2 (d) is the longitudinal position profile. The
yellow bar again represents the surrounding vehicle. In this
scenario the host vehicle executes a lateral decision (lane
changing), where at first it keeps the original lane (l = 0,
blue trajectory) and then changes to the left lane (l = −1, red
trajectory). The yellow bar is not accessible when l = −1.

After generating the longitudinal position profile and the
lateral decision commands (equal to the lane index), the
augmented trajectory (4) can be transformed to a 2D trajec-
tory xr according to the road coordinate, where the lateral
position is set to the centerline of its corresponding lane
index. xr is then passed to the local trajectory planner as a
reference trajectory.

C. Passenger Comfort Awareness

Along the generated trajectory xr, lateral acceleration
needs to be limited to ensure passenger comfort. Since
the lateral acceleration has relationship with the trajectory
curvature and speed. Moreover, the curvature is determined
given the road centerline, which means that limiting lateral
acceleration is equivalent to limiting speed.

The Bezier curve is used to represent the road centerline
because it has analytical form and is efficient. The formula-
tion of Bezier curve is:

B (τ) = (1− τ)
2
P0 + 2 (1− τ) τP1 + τ2P2, 0 ≤ τ ≤ 1

(6)
where P0, P1 and P2 are key points on the road centerline.
With this analytical form, the first and second derivatives of

1653

the curve can be calculated analytically:

B′ (τ) = 2 (1− τ) (P1 − P0) + 2τ (P2 − P1)
B′′ (τ) = 2 (P2 − 2P1 + P0)

(7)

Then the curvature can be calculated by:

κ (τ) =
|B′ (τ)×B′′ (τ)|
‖B′ (τ)‖3

(8)

and the speed limit is given by:

vmax (τ) =

√
amax

κ (τ)
(9)

where amax is the maximum lateral acceleration allowed.
By integrating the norm of B′ (τ), the longitudinal posi-

tion can be calculated as:

x (τ) =

∫ τ

0

‖B′ (τ)‖ dτ (10)

The index τ bridges a relationship between the longitu-
dinal position and the speed limit vmax (x). Therefore, the
constraint on speed profile gv (v (t) , t) < 0 is formulated as:

gv (v (t) , t) = v (t)− vmax (x (t)) < 0 (11)

A remaining question is how to calculate the speed limit
when the lane index l changes, which will cause an abrupt
change in the lateral position. We believe that its influence
is negligible because the curvature of the adjacent lanes at
the same longitudinal position is approximately the same,
and the low-level trajectory planner will smooth the abrupt
lateral change.

D. Speed Profile Sampling and Searching

To plan an optimal speed profile, a speed profile sampling
and searching method similar to that in [19] is used. First,
multiple possible speed profiles are sampled in the speed-
time graph. To initialize the sampling, a discretization pro-
cess is applied to both the speed and the time dimensions.
For example, as shown in Fig.3, the time is discretized by 2
seconds and the speed is discretized by 2 m/s. We call each
time discretization point a ”station”, e.g, 2 s, 4 s and 6 s are
the three stations in Fig.3. Furthermore, we call the speed-
time joint discretization points ”nodes”, which are shown as
green dots in the figure. Note that on the initial time station
(0 s), there is only one node which is the current speed.

In order to construct the speed profiles, every node is
connected to all of its ”feasible” adjacent nodes. Here
”feasible” means satisfying the basic acceleration constraint,
which is formulated as

a ≤ v (t1)− v (t0)

t1 − t0
≤ ā (12)

where t0 and t1 are adjacent stations with t0 < t1. Note this
constraint is not equal to the acceleration constraint in (5). It
is just a fast method to prune the speed profile samples for
computational efficiency.

The connections between nodes are represented by third
order polynomials:

v (t) = ρ0 + ρ1t+ ρ2t
2 + ρ3t

3, t0 ≤ t ≤ t1 (13a)

Fig. 3. Speed profile sampling

s.t. v (t0) = v0
v (t1) = v1

a (t0) = dv(t)
dt

∣∣∣
t=t0

= 0

a (t1) = dv(t)
dt

∣∣∣
t=t1

= 0

(13b)

where ρ0, ρ1, ρ2 and ρ3 are parameters which can be
determined by the conditions (13b). t0, t1, v0 and v1 are
constant values from the nodes. The zero acceleration con-
ditions ensure the smoothness of the speed profile. (13) also
constitutes a piece of speed profile. By connecting pieces
through the whole preview horizon, an entire speed profile
is established:

vi (t) , 0 ≤ t ≤ T, i ∈ I (14)

where i is the index of the speed profile and I is the set of
all indexes.

With vi (t), the longitudinal position profile xi (t) and
the acceleration profile ai (t) can be calculated. The lateral
decision profile l (t) is sampled by defining a decision time
tdec such that l = 0 when t < tdec and l 6= 0 when t ≥ tdec.
Here we assume that the decision will only change once in
the preview horizon. Then the costs and constraints of each
speed profile will be calculated according to (5). The speed
profile with the minimal cost without violating the constraints
is selected as the optimal speed profile.

However, calculating the costs and constraints in the
continuous analytical form as described in (5) is intractable.
In order to address this issue, the speed profile is discretized
to several checkpoints. The cost of (5) is approximated by the
sum of costs of all checkpoints, and the constraint violation
is approximated by the violation of the checkpoints.

The resulting speed profile will not be accurately optimal
because of several discretization processes. However, this
will not influence the final planning result because the
speed profile is only a reference to the low level planning
module. The planning module will smooth and optimize the
trajectory. The most important effect of the speed profile is
to give a decision pattern.

IV. MAXIMUM INTERACTION DEFENSIVE POLICY

Until now, we have been discussing under a deterministic
environment. In the real world, the motions of moving

1654

Fig. 4. The Maximum Interaction Defensive Policy

obstacles are uncertain, and they can be influenced by the
motion of the host vehicle. In this section, the maximum
interaction defensive policy is introduced to take into account
the uncertain and interactive environments.

A. Three-stage Framework

Considering full uncertainty and interaction is extremely
difficult and computationally intractable. In order to simplify
the problem, we analogize the pattern of human drivers’
decision process. When a human driver is encountered with
some other vehicle, he/she will keep estimating its intention
while guaranteeing safety, and then decide how to interact
with the vehicle. In this paper, we will only discuss the
situation with one obstacle. Cases with multiple obstacles
can be solved by sequentially applying the algorithm for one
obstacle. The decision pattern is formulated as a three-stage
framework described as follows:

1) Safety Stage: The first stage is a short term safety
stage. In this stage, safety (e.g, no collision) must be guar-
anteed in respect to all possible behaviors of the moving
obstacle. Without loss of generality, assume that the obstacle
has two possible behaviors, whose models can be written as:

ξm = bi (ξh, sm) , i ∈ {1, 2} (15)

where ξh is the future trajectory (a piece of longitudinal
position profile) of the host vehicle and ξm is the predicted
future trajectory of the moving obstacle. sm is the moving
obstacle’s state which contains useful information for pre-
diction. Furthermore, each model comes with a probability:

Pi (sm) , i ∈ {1, 2} (16)

The models (15) can be either interactive or not, depending
on whether ξh has influence on ξm. Denote the longitudinal
position of the host vehicle and the moving obstacle at time
t be ξh (t) and ξm (t), respectively. Actually ξh (t) = x (t).
Define a safe set as

d (ξm (t) , x (t)) < 0 (17)

Then if at time t, the host vehicle and the moving obstacle
are able to have physical contact (e.g, finished merging or
lane changing), d (ξh (t) , x (t)) = d (b (x (t) , sm (t)) , x (t))
makes up part of the constraint function gx (x (t) , l (t) , t) in
(5).

In the safety stage, both the two safe set (17) generated
by the two behavior models (15) need to be considered as
constraints if time t is physical contactable, unless one of

them has zero probability. The underneath logic is that in
the short term, safety needs to be guaranteed regardless of
the type of the surrounding vehicle behavior.

2) Uncertainty Bifurcation Stage: The second stage is
called uncertainty bifurcation stage. In this stage, the two
different behaviors need to be considered separately. As
shown in Fig.4, after the safety stage Tsafe, the speed profile
bifurcates to two different trajectories in the uncertainty
bifurcation stage denoted by T 1

bif and T 2
bif . The safety

constraint (17) is not considered because the host vehicle
and the obstacle are not able to have physical contact in this
stage.

Denote the time interval of the safety stage be
[0, Tsafe]. Denote the time intervals of the uncer-
tainty bifurcation stage by

[
Tsafe, Tsafe + T 1

bif

]
and[

Tsafe, Tsafe + T 2
bif

]
for the two behaviors respectively.

Then the predicted states at the end of this stage
are s1m

(
Tsafe + T 1

bif

)
= s

(
ξm
(
Tsafe + T 1

bif

))
and

s2m
(
Tsafe + T 2

bif

)
= s

(
ξm
(
Tsafe + T 2

bif

))
for the two

behaviors respectively, where s represents the process to
generate the state from the speed profile.

3) Interaction Stage: The third stage is the interaction
stage. The start time of this stage is determined by the host
vehicle. For a merging scenario, the stage starts when the
host vehicle exceeds the longitudinal position of the merge
point. For a lane changing scenario, the stage starts when the
value of l changes from 0 to -1 or 1. As shown in Fig.4, T 1

int

and T 2
int represent the interaction stage for the two behaviors

respectively.
In this stage, a unified interaction model is used to predict

the surrounding vehicle. For example, before the host vehicle
merges to the lane, the surrounding vehicle can either yield
or pass. However, after the host vehicle merges in front
of the surrounding vehicle, the surrounding vehicle can
only yield the host vehicle. Despite the unified interaction
model, we still need to consider two different trajectories,
because the uncertainty bifurcation stage introduces two
different predictions of the surrounding vehicle motion. The
interaction model is written as:

ξm = bint (ξh, sm) (18)

Since now the host vehicle is able to have physical contact
with the moving obstacle, the safety constraints need to be
considered for the two behaviors:

d
(
bint

(
x (t) , sm

(
Tsafe + T iint

))
, x (t)

)
< 0, i ∈ {1, 2}

(19)

B. The Speed Profile Planning Algorithm

Under the three stage framework, the cost function of the
optimization problem (5) is modified to:

min
f

∫ Tsafe

t=0
Jdt

+
2∑
i=1

Pi

{∫ Tsafe+T
i
bif

Tsafe
Jdt+

∫ Tsafe+T
i
bif+T

i
int

Tsafe+T i
bif

Jintdt

}
(20)

where J is the abbreviation of Jv (v (t) , l (t)) + Ja (a (t)).
Jint is the cost in the interaction stage, which is different

1655

from J by adding an additional courtesy awareness term
Jcourt, which is proportional to the trajectory change of
the moving obstacle caused by the interaction with the
host vehicle. For example, if before the interaction stage
the moving obstacle runs with model bi, then according
to this model its future trajectory will be ξm. Then when
using the interaction model bint, the future trajectory is
ξm

′. The trajectory change is calculated by
∥∥ξm′ − ξm

∥∥2
2
.

The courtesy awareness term makes the host vehicle less
aggressive. Otherwise, the host vehicle will immediately start
the interaction (e.g, change the lane) if it will not collide with
the surrounding vehicle, but this might cause the surrounding
vehicle change its action abruptly (e.g, perform a sudden
brake).

When solving the optimization problem, the constraints
for the velocity and acceleration are the same as (5), and the
event constraints are specified in Section IV-A. In order to
handle the uncertainty bifurcation, we first check the speed
profiles from Tsafe to T , and find the optimal speed profiles
for both i = 1 and i = 2. Then their optimal costs are
summed weighted by their probabilities. Finally, the costs
of speed profiles from the initial time to Tsafe are added to
calculate the total costs. The speed profile with the smallest
total costs is the optimal one. Note that this speed profile is
bifurcated in [Tsafe, T]. We average the bifurcated profiles
to get a single speed profile. The resulting profile is then
transformed to a reference trajectory and sent to the low
level trajectory planner.

V. SIMULATIONS

In this section, several simulations are presented to show
the capability of the proposed method. We first show the
system performance under environments with static obstacles
and deterministic obstacles. Then we show a case study on
a ramp merging scenario, where a stochastic surrounding
vehicle behavior model is learned from NGSIM dataset.

The simulation program is written in Matlab. A bicycle
kinematic model is used as the vehicle dynamic model. The
simulation runs closed loop with a lower level trajectory
planner and controller, whose details can be found in [18].
The sampling time Ts = 0.2s and the preview horizon is
T = 6s. For stochastic and interactive moving obstacles, the
safety stage time is Tsafe = 1s. The lateral acceleration limit
is amax = 2.6m

/
s2. The longitudinal acceleration limits are

ā = 3m
/
s2 and a = −5m

/
s2. The rectangles represent

vehicles, where the blue rectangle represents the host vehicle
and the red rectangles represent the surrounding vehicles.

A. Static and Deterministic Obstacles

For static and deterministic obstacles, the longitudinal
position constraints are known in advance. In this case, tools
in Section III are enough to make a good decision. Two cases
are shown here to illustrate the planning results.

1) Static Obstacles: This case tests the system’s capability
of collision avoidance for static obstacles and passenger
comfort awareness on curve road. As shown in Fig.5 (a),
the blue curve represents the the road centerline which the

Fig. 5. A right turning scenario with street side parked vehicles

host vehicle needs to track. There are two static vehicles (in
red) parking on the road side. Fig.5 (a) shows the trajectory
of the host vehicle, where the deeper color represents the
later time step. The host vehicle avoids the parked vehicles
and turns right smoothly. Fig.5 (b) shows the speed profile
of the host vehicle, from which we see that the host vehicle
starts from a zero speed, accelerates when passing the parked
vehicles, and then decelerates to turn right comfortably.

2) Deterministic Moving Obstacles with constant velocity:
This case shows the system’s capability of dealing with
multiple deterministic moving obstacles. As shown in Fig.6
(a), the two blue lines represent the centerlines of two
opposite-direction adjacent lanes. The host vehicle is driving
on the downside lane with a slow vehicle in front of it. The
front vehicle maintains a speed of 3m/s. A vehicle driving
towards the opposite direction is in the adjacent lane.

In Fig.6, the oncoming vehicle maintains a speed of 5m/s.
From the trajectory plots Fig.6 (a) and the host vehicle
speed profile Fig.6 (b), we can see that since the oncomming
vehicle is slow, the system decides to accelerates to overtake
the front vehicle before the oncoming vehicle arrives.

In Fig.7, the oncoming vehicle maintains a speed of
15m/s. From the trajectory plots Fig.7 (a) and the host
vehicle speed profile Fig.7 (b), we can see that since the
oncomming vehicle is fast, the system decides to decelerates
to wait the oncoming vehicle pass, and then overtake the
front vehicle.

B. Stochastic and Interactive Motion Prediction

Before showing the results for cases with stochastic mov-
ing obstacles, we describe how to predict their motions
first. The objective of the motion prediction is to obtain the
surrounding vehicle behavior models (15) and the interaction
model (18), as well as the probabilities (16) for the behavior
models. Here we give an example about how we predict the
motion for a merging scenario. As shown in Fig. 2 (a), the

1656

Fig. 6. An overtaking scenario when the up coming vehicle is slow

Fig. 7. An overtaking scenario when the up coming vehicle is fast

host vehicle (in red) is on the ramp, and the motion of the
surrounding vehicle (in yellow) on the main road needs to
be predicted. The built models will be used in Section V-C.

1) Vehicle Models: Before the host vehicle merges to the
lane, there are two different behaviors for the surrounding
vehicle: pass or yield. For the pass case, we assume it is a
constant speed model. For the yield case, we assume it is
a car following model. Mathematically, let b1 be a constant
speed model and b2 be a car following model.

The constant speed model is easy. For the car following
model, we learn it from the NGSIM dataset. Several car
following trajectories are found in the dataset and features
are extracted. Then a neural network is trained to predict the
next time step speed of the host vehicle from the current
speed/position of the host and front vehicle. The predicted
speed is further filtered and integrated to get the future
position. The interaction model bint is assumed to be also a
car following model, which is same with b2.

2) Model Recognition: Before merging, b1 and b2 are
the two possible models with probabilities P1 and P2 re-
spectively. Trajectories of vehicles for both the passing case
and the yielding case are found in the NGSIM dataset and
features such as speed, position, time to merge point are
extracted. A logistic model is trained with the data and used
to predict P1 and P2. After merging, the only possible model
is the interaction model so no model recognition process is
needed.

Fig. 8. Deterministic planning in a ramp merging scenario with the
surrounding vehicle yielding

C. A Ramp Merging Scenario Case Study

A ramp merging scenario is studied in this subsection,
where the surrounding vehicle is considered stochastic and
interactive. As shown in Fig. 8 (a), the blue lines represent
the two merging lanes’ centerlines. The host vehicle (in blue)
is trying to merge to the lane occupied by a surrounding
vehicle (in red).

For the surrounding vehicle, we use the models learned
in Section V-B. In the first case we use the car following
model b2 and in the second case we use the constant speed
model b1. After the host vehicle arrives at the merge point,
the model changes to a car following model.

1) Yielding host vehicle: In this case, the surrounding
vehicle will yield the host vehicle, but the host vehicle does
not know that in advance. Fig.8 shows the result of adopting
deterministic planning with constant speed assumption. The
host vehicle fails to merge even though the surrounding
vehicle decelerates to yield. On the contrary, Fig.9 shows
the result of adopting MIDP. The host vehicle recognizes
the yielding behavior and succeeds finishing merging.

2) Passing host vehicle: In this case, the surrounding
vehicle will not yield the host vehicle. Fig.10 shows the
results of adopting MIDP without considering interaction.
Since the probability of the surrounding vehicle not yielding
is very high, in order to guarantee safety, the host vehicle
decelerates to wait. This is acceptable when there is only
one surrounding vehicle. However, when there are multiple
surrounding vehicles coming consequently, then the host
vehicle can never finish merging. Fig.11 shows the results
of adopting MIDP considering interaction. Since the host
vehicle predicts that the surrounding vehicle will yield after
it merges, it succeeds merging the lane.

VI. CONCLUSION

In this paper, the continuous decision making (CDM)
framework is proposed to formulate different driving sce-
narios in a unified way. Within the framework, a maximum
interaction defensive policy (MIDP) is proposed, which

1657

Fig. 9. MIDP in a ramp merging scenario with the surrounding vehicle
yielding

Fig. 10. MIDP without interaction stage in a ramp merging scenario with
the surrounding vehicle passing

Fig. 11. MIDP in a ramp merging scenario with the surrounding vehicle
passing

calculates the best action to interact with stochastic moving
obstacles while guaranteeing safety. The method is applied
to a ramp merging scenario and the stochastic behavior
behavior models of the surrounding vehicles are learned from
the NGSIM dataset. In the future, different complex driving
scenarios with multiple surrounding vehicles will be studied.

REFERENCES

[1] Rajamani, R., Tan, H. S., Law, B. K., & Zhang, W. B. (2000).
Demonstration of integrated longitudinal and lateral control for the
operation of automated vehicles in platoons. IEEE Transactions on
Control Systems Technology, 8(4), 695-708.

[2] Montemerlo, M., Thrun, S., Koller, D., & Wegbreit, B. (2002, July).
FastSLAM: A factored solution to the simultaneous localization and
mapping problem. In Aaai/iaai (pp. 593-598).

[3] Liu, C., Lin, C. Y., Wang, Y., & Tomizuka, M. (2017, May). Convex
feasible set algorithm for constrained trajectory smoothing. In Amer-
ican Control Conference (ACC), 2017 (pp. 4177-4182). IEEE.

[4] Chen, J., Zhan, W., & Tomizuka, M. (2017, October). Constrained
Iterative LQR for On-road Autonomous Driving Motion Planning. In
Intelligent Transportation Systems (ITSC), 2017 IEEE 20th Interna-
tional Conference on. IEEE.

[5] SAE On-Road Automated Vehicle Standards Committee. (2014). Tax-
onomy and definitions for terms related to on-road motor vehicle
automated driving systems. SAE Standard J3016, 01-16.

[6] Available Online: https://www.theguardian.com/technology/2016/mar
/09/google-self-driving-car-crash-video-accident-bus.

[7] Urmson, C., Anhalt, J., Bagnell, D., Baker, C., Bittner, R., Clark,
M. N., ... & Gittleman, M. (2008). Autonomous driving in urban
environments: Boss and the urban challenge. Journal of Field Robotics,
25(8), 425-466.

[8] Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dolgov, D.,
Ettinger, S., ... & Johnston, D. (2008). Junior: The stanford entry in
the urban challenge. Journal of field Robotics, 25(9), 569-597.

[9] Miller, I., Campbell, M., Huttenlocher, D., Kline, F. R., Nathan, A.,
Lupashin, S., ... & Garcia, E. (2008). Team Cornell’s Skynet: Robust
perception and planning in an urban environment. Journal of Field
Robotics, 25(8), 493-527.

[10] Kohlhaas, R., Bittner, T., Schamm, T., & Zllner, J. M. (2014, October).
Semantic state space for high-level maneuver planning in structured
traffic scenes. In Intelligent Transportation Systems (ITSC), 2014
IEEE 17th International Conference on (pp. 1060-1065). IEEE.

[11] Kohlhaas, R., Hammann, D., Schamm, T., & Zllner, J. M. (2015,
September). Planning of high-level maneuver sequences on semantic
state spaces. In Intelligent Transportation Systems (ITSC), 2015

[12] Hubmann, C., Aeberhard, M., & Stiller, C. (2016, November). A
generic driving strategy for urban environments. In Intelligent Trans-
portation Systems (ITSC), 2016 IEEE 19th International Conference
on (pp. 1010-1016). IEEE.

[13] Zhan, W., Chen, J., Chan, C. Y., Liu, C., & Tomizuka, M. (2017,
June). Spatially-partitioned environmental representation and planning
architecture for on-road autonomous driving. In Intelligent Vehicles
Symposium (IV), 2017 IEEE (pp. 632-639). IEEE.

[14] Zhan, W., Liu, C., Chan, C. Y., & Tomizuka, M. (2016, November).
A non-conservatively defensive strategy for urban autonomous driv-
ing. In Intelligent Transportation Systems (ITSC), 2016 IEEE 19th
International Conference on (pp. 459-464). IEEE.

[15] Sadigh, D., Sastry, S., Seshia, S. A., & Dragan, A. D. (2016, June).
Planning for Autonomous Cars that Leverage Effects on Human
Actions. In Robotics: Science and Systems.

[16] Next Generation Simulation (NGSIM). [Online]. Available:
https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm.

[17] C. Liu, J. Chen, T. Nguyen and M. Tomizuka. The Robustly-Safe
Automated Driving System for Enhanced Active Safety. No. 2017-01-
1406. SAE Technical Paper, 2017.

[18] J. Chen, C. Liu and M. Tomizuka. FOAD: Fast optimization-based
autonomous driving motion planner. submitted to American Control
Conference, 2018.

[19] Gu, T., Atwood, J., Dong, C., Dolan, J. M., & Lee, J. W. (2015,
September). Tunable and stable real-time trajectory planning for urban
autonomous driving. In Intelligent Robots and Systems (IROS), 2015
IEEE/RSJ International Conference on (pp. 250-256). IEEE.

1658

		2018-10-06T01:31:36-0400
	Certified PDF 2 Signature

