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Abstract— This paper presents a distributed Bayesian fil-
tering (DBF) method for a network of multiple unmanned
ground vehicles (UGVs) under dynamically changing inter-
action topologies. The information exchange among UGVs
relies on a measurement dissemination scheme, called Latest-
In-and-Full-Out (LIFO) protocol. Different from statistics dis-
semination approaches that transmit posterior distributions or
likelihood functions, each UGV under LIFO only sends a buffer
that contains latest available measurements to neighboring
nodes, which significantly reduces the transmission burden
between each pair of UGVs to scale linearly with the size of
the network. Under the condition that the union of undirected
switching topologies is connected frequently enough, LIFO
can disseminate observations over the network within finite
time. The LIFO-based DBF algorithm is then derived to
estimate individual probability density function (PDF) for target
localization in a static environment. The consistency of this
algorithm is proved that each individual estimate of target
position converges in probability to the true target position. The
effectiveness of this method is demonstrated by comparing with
consensus-based distributed filters and the centralized filter in
simulations.

Index Terms— Multiple vehicle system, target localization,
environmental sensing, distributed filtering, switching interac-
tion topology

I. INTRODUCTION

Unmanned ground vehicles (UGV) that operate without
on-board operators have been used for many applications
that are inconvenient, dangerous, or impossible to human.
Distributed estimation using a group of networked UGVs
has been applied to collectively infer status of complex en-
vironment, such as intruder detection [1] and object tracking
[2]. Several techniques have been developed for distributed
estimation, including distributed linear Kalman filters (DKF)
[3], distributed extended Kalman filters [4] and distributed
particle filters [5], etc. The most generic filtering scheme is
distributed Bayesian filters (DBF), which can be applied for
nonlinear systems with arbitrary noise distributions [6], [7].
This paper focuses on a communication-efficient DBF for
networked UGVs.
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The interaction topology plays a central role on the design
of DBF, of which two types are widely investigated in
literature: fusion center (FC) and neighborhood (NB). In the
former, local statistics estimated by each agent is transmitted
to a single FC, where a global posterior distribution is
calculated at each filtering cycle [8], [9]. In the latter,
each agent individually executes distributed estimation and
the agreement of local estimates is achieved by certain
consensus strategies [10]–[12]. In general, the NB-based
distributed filters are more suitable in practice since they
do not require a fusion center with powerful computation
capability and are more robust to changes in network topol-
ogy and link failures. So far, the NB-based approaches
have two mainstream schemes according to the transmitted
data among agents, i.e., statistics dissemination (SD) and
measurement dissemination (MD). In the SD scheme, each
agent exchanges statistics such as posterior distributions and
likelihood functions within neighboring nodes. In the MD
scheme, instead of exchanging statistics, each agent sends
its observations to neighboring nodes.

Statistics dissemination scheme has gained increasing in-
terest and been widely investigated during last decade. Olfati-
Saber (2005) proposed a distributed linear Kalman filter
(DKF) for estimating states of linear systems with Gaussian
process and measurement noise [3]. Gu (2007) proposed a
distributed particle filter for Markovian target tracking over
an undirected sensor network [5]. Saptarshi et al. (2014)
presented a Bayesian consensus filter that uses logarithmic
opinion pool for fusing distributions of the tracked target [6].

Despite the popularity of statistics dissemination, exchang-
ing statistics can consume high communication resources.
One remedy is to approximate statistics with parametric mod-
els, e.g., Gaussian Mixture Model [13], which can reduce
communication burden to a certain extent. However, such
manipulation increases the computation burden of each agent
and sacrifices filtering accuracy due to approximation. The
measurement dissemination scheme is an alternative solution
to address the issue of exchanging statistics. An early work
on measurement dissemination was done by Coates et al.
(2004), who used adaptive encoding of observations to
minimize communication overhead [14]. Ribeiro et al. (2006)
exchanged quantized observations along with error-variance
limits considering more pragmatic signal models [15]. A
recent work was conducted by Djuric et al. (2011), who
proposed to broadcast raw measurements to other agents,
and therefore each agent has a complete set of observations
of other agents for executing particle filtering [16]. A short-
coming of aforementioned works is that their communication
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topologies are assumed to be a fixed and complete graph
that every pair of distinct agents is constantly connected
by a unique edge. In many real applications,the interaction
topology may change dynamically due to unreliable links,
external disturbances and/or range limits. In such cases,
dynamically changing topologies can cause random packet
loss and variable transmission delay, thus decreasing the
performance of distributed estimation, and even leading to
inconsistency and non-consensus.

The main contribution of the paper is that we present a
measurement dissemination-based distributed Bayesian filter-
ing (DBF) method for a group of networked UGVs with dy-
namically changing interaction topologies. The measurement
dissemination scheme uses the so-called Latest-In-and-Full-
Out (LIFO) protocol, under which each UGV is only allowed
to broadcast observations to its neighbors by using single-
hopping. Individual Bayesian filter is implemented locally
by each UGV after exchanging observations using LIFO.
Under the condition that the union of undirected switching
topologies is connected frequently enough, two properties
are achieved: (1) LIFO can disseminate observations over the
network within finite time; (2) LIFO-based DBF guarantees
the consistency of estimation that each individual estimate
of target position converges in probability to the true target
position as the number of observations tends to infinity.
The main benefit of using LIFO is on the reduction of
communication burden, with the transmission data volume
scaling linearly with the size of the UGV network.

The rest of this paper is organized as follows: the LIFO
protocol for dynamically changing interaction topologies is
formulated in Section II; the LIFO-based DBF algorithm is
described in Section III, where the consistency of estimation
is proved; simulation results are presented in Section IV and
Section V concludes the paper.

II. LIFO PROTOCOL FOR DYNAMICALLY CHANGING
INTERACTION TOPOLOGIES

Consider a network of N UGVs in a bounded two-
dimensional space S. The interaction topology can be dy-
namically changing due to limited communication range,
varying team formation or link failure. Each UGV is
equipped with a sensor for environmental perception. Due to
the limit of communication range, each UGV can only ex-
change sensor observations with its neighbors. The Bayesian
filter is run locally on each UGV based on its own and
received observations via single-hopping to estimate the
position of a static target in S.

A. Graphical Model of Interaction Topology

Consider a simple1, undirected graph G = (V,E) to
represent the interaction topology of N networked UGVs,
where V = {1, . . . , N} represents the index set of UGVs

1An undirected graph G = (V,E) is simple if it has no self-loops or
repeated edges, i.e., (i, j) ∈ E, only if i 6= j and E only contains distinct
elements. A graph is connected when there is a path between every pair of
vertices in V .

(a) (b) (c)

Fig. 1: Three types of topologies: (a) ring topology; (b) line
topology; (c) star topology

and E = V ×V denotes the edge set. The adjacency matrix
M = [mij ] of graph G describes the interaction topology:

mij =

{
1 if (i, j) ∈ E

0 if (i, j) /∈ E
,

where mij denotes the entity of adjacency matrix. The
notation mij = 1 indicates that a communication link
exists between ith and jth UGV and mij = 0 indicates no
communication between them. Fig. 1 illustrates three types
of typical topologies: ring, line, and star. All of them are
represented by simple and undirected graphs.

Let Ḡ denote the set of all possible simple and undirected
graphs defined for the network of UGVs. It is easy to know
that Ḡ has finite elements. The adjacency matrix associated
with a graph Gl ∈ Ḡ is denoted as M l = [ml

ij ]. Define the
union of a collection of graphs {Gi1 , Gi2 , . . . , Gil} ⊂ Ḡ as
the undirected graph with nodes in V and edge set given by
the union of edge sets of Gij , j = 1 . . . , l. Such collection
is defined to be jointly connected if the union of its members
forms a connected graph.

We define two concepts of neighborhood in a UGV net-
work. The direct neighborhood of ith UGV under topology
Gl is defined as Ni(Gl) =

{
j|ml

ij = 1, j ∈ {1, . . . , N}
}

.
All UGVs in Ni(Gl) can directly exchange information
with ith UGV via single-hopping. In addition to direct
neighborhood, another set called available neighborhood is
defined as Qi(Gl), which contains indices of UGVs whose
observations can be received by the ith UGV given a specific
observation exchange protocol and the interaction topology
Gl. Note that in general Ni(Gl) ⊆ Qi(Gl).

B. Latest-In-and-Full-Out (LIFO) Protocol

This study proposes a Latest-In-and-Full-Out (LIFO) pro-
tocol for observation exchange. Under LIFO, each UGV
contains a communication buffer (CB) to store its latest
knowledge of observations of all UGVs:

zCB,i
k =

[
z1
ki
1
, . . . , zNki

N

]
where zj

ki
j

represents the observation made by jth UGV

at time kij . Note that under LIFO and certain conditions
of interaction topologies, Qi = {1, . . . , N} \ {i}, which
will be proved in Corollary 1. zj

ki
j

is stored in the CB

of ith UGV, where kij is the latest observation time of jth

UGV that is available to ith UGV by time k. Due to the
communication delay, kij < k,∀j 6= i and kii = k always
holds. Let G[k] ∈ Ḡ represent the interaction topology at
time k. The LIFO protocol is stated in Algorithm 1. For
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the clarity of explanation of DBF in Section III, we define a
new observation set znew,i

k for ith UGV to denote the set of
observations that the ith UGV receives and stores in its CB.

Algorithm 1 LIFO Protocol

(1) Initialization: The CB of ith UGV is initialized when
k = 0,

zj
ki
j

= ∅, kij = 0, j = 1, . . . , N

(2) At kth (k ≥ 1) step for ith UGV:
(2.1) Receiving Step:

The ith UGV receives all CBs of its direct neigh-
borhood Ni(G[k − 1]). The received CBs are totally
|Ni(G[k − 1])| groups, each of which corresponds to the
(k−1)th step CB of a UGV in Ni(G[k−1]). The received
CB from lth (l ∈ Ni(G[k − 1])) UGV is denoted as

zCB,l
k−1 =

[
z1

(k−1)l1
, . . . , zN(k−1)lN

]
, l ∈ Ni(G[k − 1])

(2.2) Observation Step:
The ith UGV updates zj

ki
j

(j = i) by its own obser-
vation at current step.

add zik to znew,i
k ,

zj
ki
j

= zik, k
i
j = k, if j = i.

(2.3) Comparison Step:
The ith UGV updates other elements of its own CB,

i.e., zj
ki
j

(j 6= i), by selecting the latest information among
all received CBs from Ni(G[k − 1]). For all j 6= i,

llatest = argmax
l∈Ni, i

{
(k − 1)

i
j , (k − 1)

l
j

}
If llatest > (k − 1)ij , add zi

(k−1)
llatest
j

to znew,i
k .

zj
ki
j

= zj
(k−1)

llatest
j

, kij = (k − 1)
llatest
j .

(2.4) Sending Step:
The ith UGV broadcasts its updated CB to all of its

neighbors defined in Ni(G[k]).
(3) k ← k + 1 until stop

Remark 1: Compared to statistics dissemination, LIFO
is generally more communication-efficient for distributed
filtering. To be specific, consider a D×D grid environment
with a network of N UGVs, the transmitted data of LIFO
between each pair of UGVs are only the CB of each UGV
and the corresponding UGV positions where observations
were made, the length of which is O(N). On the contrary,
the length of transmitted data for a statistics dissemination
approach that transmits unparameterized posterior distribu-
tions or likelihood functions is O(D2), which is in the order
of environmental size. Since D is generally much larger than
N in applications such as target localization, LIFO requires
much less communication resources.

Fig. 2 illustrates the LIFO cycles of a network of 3
UGVs with switching line topologies. There are two types
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Fig. 2: Example of LIFO with three UGVs using switching
line interaction topologies. The double-headed arrow repre-
sents a communication link between two UGVs.]

of topologies: under the first one only UGV 1 and UGV 2
can directly communicate and under second one only UGV
2 and UGV 3 can directly communicate. Several facts can be
noticed in Fig. 2: (1) the two topologies are jointly connected
within each time intervals [0, 3) , [3, 5) , [5, 7); (2) CBs of all
UGVs are filled within 5 steps; (3) after being filled, each
CB keeps updated every finite time steps, which means each
UGV receives new observations of other UGVs with finite
delay. Extending these facts to a network of N UGVs, we
have the following proposition:

Proposition 1: Consider a network of N UGVs with
undirected switching interaction topologies. If the following
two conditions are satisfied: (1) there exists an infinite se-
quence of time intervals [km, km+1) , m = 1, 2, . . . , starting
at k1 = 0 and are contiguous, nonempty and uniformly
bounded; (2) the union of graphs across each such interval is
jointly connected, then arbitrary pair of UGVs can exchange
observations under LIFO. In addition, the delay between
each pair of UGVs is no greater than (N − 1)Tu, where
Tu = sup

m=1,2,...
(km+1 − km)T is the upper bound of interval

lengths.
Proof: Consider the transmission between two arbitrary

UGVs, i and j. Since the union of graphs across time interval
[k1, k2) is jointly connected, ith UGV can directly commu-
nicate with at least one another UGV at a time instance, i.e.,
∃l1 ∈ V, t1 ∈ [k1, k2) such that i ∈ Nl1(G[t1]). This implies
that observation zit1 is received and stored in the CB of lth1
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UGV at t1+1 under LIFO. Therefore, at least one UGV other
than ith UGV has received and received observation from ith

UGV by k2. If l1 = j, then we have proved the exchange
of observations between i and j. If l1 6= j, we consider
time interval [k2, k3). By using similar derivation as before,
it is easy to understand that ∃l2 ∈ V, t2 ∈ [k2, k3) such that
i ∈ Nl2(G[t2]) or l1 ∈ Nl2(G[t2]). For the former case, zit2
is received and stored in the CB of lth2 UGV at t2 + 1 under
LIFO; for the latter case, zit1 is received by lth2 UGV at t2 +1
but may not be stored in its CB. This happens if lth2 UGV has
received a newer observation zit′2

, t1 < t′2 < t2, from UGVs
other than l1. In both cases, at least two UGVs have received
and stored an observation from ith UGV by k3. Using similar
derivation, it can be shown that all N − 1 UGVs, except ith

UGV, will receive and store an observation from i no later by
kN . Therefore, the transmission delay between an arbitrary
pair of UGVs is no greater than (N − 1)Tu.

Corollary 1: With the same network condition in Propo-
sition 1, all elements in zCB,i

k under LIFO become filled
within finite time, i.e., Qi = {1, . . . , N} \ {i}. Additionally,
each element keeps updated every finite period of time.

Proof: According to Proposition 1, the transmission
delay between an arbitrary pair of UGVs is no greater than
(N−1)Tu. Therefore, CBs of all UGVs becomes filled when
k ≥ (N−1)Tu. In addition, each element in CBs gets updated
every finite period of time no greater than (N − 1)Tu.

III. DISTRIBUTED BAYESIAN FILTER VIA
LATEST-IN-AND-FULL-OUT PROTOCOL

A. Probabilistic Model of Binary Sensor
In this study, each UGV is equipped with a binary sensor,

which only gives two types of observation: 1 if the target is
detected, and 0 if no target is detected. The observation of
ith sensor at kth time step is denoted as zik. The likelihood
function that the target is detected is

P (zik = 1|xT ;xR,i) ∈ [0, 1] , xT ∈ S, (1)

where xT denotes the target position; xR,i is the position
of ith UGV. Correspondingly, the likelihood function that no
target is detected is

P (zik = 0|xT ;xR,i) = 1− P (zik = 1|xT ;xR,i). (2)

The combination of Eq. (1) and Eq. (2) forms a binary
sensor model parameterized by xT and xR,i. For the purpose
of simplicity, we will not explicitly write xR,i when no con-
fusion may occur. The commonly used likelihood functions
for binary sensor include Gaussian function [17], [18] and
step function [19].

B. Distributed Bayesian Filter for Multiple UGVs

The distributed Bayesian filter (DBF) using LIFO protocol
is introduced in this section. Each UGV has its individual
estimation of posterior density function (PDF) of target po-
sition, called individual PDF. The individual PDF of ith UGV
at time k is defined as P i

pdf (xT |znew,i
1:k ), where znew,i

1:k denotes
the collection of new observation set by ith UGV from time
1 to k. The individual PDF is initialized as P i

pdf (xT |znew,i
0 ) =

P (xT ), given all available prior information including past
experience and environmental knowledge. Under the frame-
work of DBF, the individual PDF is recursively estimated
using Bayes’ formula, based on observations of ith UGV
and that of UGVs in Qi.

To be specific, at time k, the ith individual PDF is updated
using the set of newly received observations znew,i

k :

P i
pdf (xT |znew,i

1:k ) = KiP
i
pdf (xT |znew,i

1:k−1)P (znew,i
k |xT )

= KiP
i
pdf (xT |znew,i

1:k−1)
∏

z
j

ki
j

∈znew,i
k

P (zj
ki
j
|xT )dxT .

(3)

where Ki is a normalization factor, given by

Ki = 1/

∫
P i
pdf (xT |znew,i

1:k−1)
∏

z
j

ki
j

∈znew,i
k

P (zj
ki
j
|xT )dxT ,

and P i
pdf (xT |znew,i

1:k ) is called posterior individual PDF;
P (zj

ki
j
|xT ) is the likelihood function of observation zj

ki
j
,

described in Eq. (1) and Eq. (2). Note that the factorization
of P (znew,i

k |xT ) in Eq. (3) results from the conditional
independence of observations by different UGVs given the
position of the target.

C. Proof of Consistency

This section presents the main result of this study that
LIFO-DBF achieves consistent estimation of target position
provided that the union of interaction topologies across some
time intervals are jointly connected frequently enough as the
system evolves. To be specific, considering S is finite and
xT∗ is the true position of target, the consistency of LIFO-
DBF for static UGVs is stated as follows:

Theorem 1: Considering a network of N static UGVs
with the interaction topology condition in proposition 1, the
estimated target position converges to the true position of
target in probability using LIFO-DBF, i.e.,

lim
k→∞

P (xT = xT∗ |znew,i
1:k ) = 1, i = 1, . . . , N.

Proof: For the purpose of clarity, define time sets of
ith UGV, K i

j,k, j ∈ {1, . . . , N}, that contain time steps
of observations by jth UGV that are contained in znew,i

1:k .
According to Corollary 1, it is known that the cardinality of
K i

j,k has following property: k − (N − 1)Tu < |K i
j,k| ≤ k.

Considering the conditional independence of observations
given xT ∈ S, the batch form of DBF at kth step is

P i
pdf (xT |znew,i

1:k ) =

P i
pdf (xT )

N∏
j=1

∏
l∈K i

j,k

P (zjl |x
T )

∑
xT∈S

P i
pdf (xT )

N∏
j=1

∏
l∈K i

j,k

P (zjl |xT )

, (4)

where P i
pdf is the initial individual PDF of ith UGV. Com-

paring P i
pdf (xT |znew,i

1:k ) with P i
pdf (xT∗ |znew,i

1:k ) yields

P i
pdf (xT |znew,i

1:k )

P i
pdf (xT∗ |znew,i

1:k )
=

P i
pdf (xT )

N∏
j=1

∏
l∈K i

j,k

P (zjl |x
T )

P i
pdf (xT∗)

N∏
j=1

∏
l∈K i

j,k

P (zjl |xT∗)

. (5)
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Take the logarithm of Eq. (5) and average it over k steps:

1

k
ln

P i
pdf (xT |znew,i

1:k )

P i
pdf (xT∗ |znew,i

1:k )
=

1

k
ln

P i
pdf (xT )

P i
pdf (xT∗ )

+
N∑

j=1

1

k

∑
l∈K i

j,k

ln
P (zj

l |x
T )

P (zj
l |xT∗ )

.

(6)
Since P i

pdf (xT ) and P i
pdf (xT∗) are bounded, then

lim
k→∞

1

k
ln

P i
pdf (xT )

P i
pdf (xT∗)

= 0. (7)

The binary observations subject to Bernoulli distribution
B(1, pj), yielding

P (zjl |x
T ) = p

z
j
l

j (1− pj)
1−z

j
l ,

where pj = P (zjl = 1|xT ). Utilizing the facts: (1) zjl are
conditionally independent samples from B(1, p∗j ) and (2) k−
(N − 1)Tu < |K i

j,k| ≤ k, the law of large numbers yields
1

k

∑
l∈K i

j,k

zjl
P−→ p∗j ,

1

k
(|K i

j,k| −
∑

l∈K i
j,k

zjl )
P−→ 1− p∗j ,

where p∗j = P (zjl = 1|xT∗) and “ P−→” denotes “convergence
in probability”. Then,

1

k

∑
l∈K i

j,k

ln
P (zjl |x

T )

P (zjl |xT∗)

P−→ p∗j ln
pj
p∗j

+ (1− p∗j ) ln
1− pj
1− p∗j

. (8)

Note that the right-hand side of Eq. (8) achieves maximum
value 0 if and only if pj = p∗j . Define

c(xT ) =

N∑
j=1

p∗j ln
pj
p∗j

+ (1− p∗j ) ln
1− pj
1− p∗j

.

Considering Eq. (7) and Eq. (8), the limit of Eq. (6) is

1

k
ln

P i
pdf (xT |znew,i

1:k )

P i
pdf (xT∗ |znew,i

1:k )

P−→ c(xT ). (9)

It follows from Eq. (9) that

P i
pdf (xT |znew,i

1:k )

P i
pdf (xT∗ |znew,i

1:k )ec(xT )k

P−→ 1. (10)

Define the set X̄T = S \
{
xT∗

}
and cM = max

xT∈X̄T
c(xT ).

Then cM < 0. Summing Eq. (10) over X̄T yields∑
xT∈X̄T

P i
pdf (xT |znew,i

1:k )e[cM−c(xT )]k

P i
pdf (xT∗ |znew,i

1:k )ecMk

P−→ |X̄T |, (11)

where |X̄T | denotes the cardinality of X̄T . Since cM < 0,
P i
pdf (xT∗ |znew,i

1:k )ecMk−→0, Eq. (11) implies∑
xT∈X̄T

P i
pdf (xT |znew,i

1:k )e[cM−c(x
T )]k P−→ 0. (12)

Utilizing the relation

0 ≤ P i
pdf (xT |znew,i

1:k ) ≤ P i
pdf (xT |znew,i

1:k )e[cM−c(x
T )]k,

it can be derived from Eq. (12) that∑
xT∈X̄T

P i
pdf (xT |znew,i

1:k )
P−→ 0.

Therefore,
lim

k→∞
P (xT = xT∗ |znew,i

1:k ) = 1− lim
k→∞

∑
xT∈X̄T

P i
pdf (x

T |znew,i
1:k ) = 1.

IV. SIMULATION

This section simulates a set of dynamically changing inter-
action topologies to demonstrate the effectiveness of LIFO-
DBF. The scenario includes six static UGVs, represented as
the square and stars in Fig. 3. The square represents the UGV
whose individual PDF is shown in the figures. UGVs are
equipped with binary sensors and the sensor model, eq. (1)
and (2), takes the form of Gaussian functions [17]:

P (zik = 1|xT ;xR,i) = e−
1
2

(xT−xR,i)T Σ−1(xT−xR,i), (13a)

P (zik = 0|xT ;xR,i) = 1− P (zik = 1|xT ;xR,i). (13b)

In the simulation, LIFO-DBF is compared with two
commonly adopted approaches in multi-agent filtering: the
consensus-based distributed filtering (CbDF) method and the
centralized filtering (CF) method. The CbDF requires robots
to continually exchange their individual PDFs with direct
neighbors, using the average of all received and its own
individual PDFs as the updated individual PDF. Multiple
rounds of communication and averaging are conducted at
each time step to ensure the convergence of each robot’s
individual PDF. The CF assumes a central unit that can
constantly receive and fuse all robots’ latest observations into
a single PDF. 10 test trials with randomly generated initial
target positions are run and each trial is terminated after 150
time steps. The average error between the estimated and true
target position and the average entropy of individual PDFs
of all 10 trials are compared among these three approaches.

Fig. 3a illustrates the collection of two topologies for the
simulation, the union of which is designed to be jointly con-
nected. These two topologies appear alternatively such that
their union are connected frequently enough. Fig. 3b shows
the individual PDF of a UGV after the initial observation. As
more observations are received by each UGV, the posterior
individual PDF concentrates to the true location of the target
(Fig. 3c), which accords with the consistency of LIFO-DBF.

Comparison of the estimation performance between LIFO-
DBF, CbDF and CF is presented in Figs. 3f and 3g. Unsur-
prisingly, the CF achieves the best performance in terms of
both small position estimation error and fast reduction of
entropy. This happens because the central unit has access to
the latest observations of all UGVs, thus making most use of
all available information. LIFO-DBF and CbDF show similar
performance as the CF does in position estimation error.
However, they significantly differ in terms of entropy reduc-
tion. In fact, LIFO-DBF has similar asymptotic performance
as the CF in reducing the entropy of PDF over time; this is
notable since each UGV only communicates with its neigh-
boring UGVs, which consumes less communication recourse
than the CF. The CbDF, on the contrary, is much slower
in entropy reduction while incurring huge communication
burden due to multiple rounds of consensus at each time step.
The difference in entropy reduction makes sense since CbDF
can only “implicitly” fuses different robots’ observation via
computing the average of individual PDFs while LIFO-DBF
and CF can directly utilize observations, thus making better
use of available information. Such difference results in vastly
different individual PDFs, as shown in Figs. 3c to 3e, which
show the PDF at the end of simulation.
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(a) Collection of changing topologies
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(b) Individual PDF
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(c) LIFO-DBF
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(d) Consensus method
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(e) Centralized filter
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Fig. 3: (a) two interaction topologies; (b) individual PDF of
the 3rd UGV after initial observation; (c)-(e) PDFs at the
end of simulation using different filters; (f) average position
estimation errors; (g) average entropy. In last two figures,
individual PDFs of the 1st, 3rd and 5th UGV using LIFO-DBF,
the common PDF using CbDF and using CF are compared.

V. CONCLUSION

This paper presents a measurement dissemination-based
distributed Bayesian filtering (DBF) method for a network
of multiple unmanned ground vehicles (UGVs) under dy-
namically changing interaction topologies. The information
exchange among UGVs relies on the Latest-In-and-Full-Out
(LIFO) protocol, which significantly reduces the transmission
burden between each pair of UGVs to scale linearly with the
network size. Under the condition that the union of undi-
rected switching topologies is connected frequently enough,
LIFO can disseminate observations over the network within
finite time. The consistency of LIFO-DBF is proved, ensuring
that each individual estimate of target position converges in
probability to the true value. Simulations show that LIFO-
DBF achieves similar performance as the centralized filter
and superior performance over consensus-based distributed
filters.

Future work includes handling other types of sensors and
directed interaction topologies. Other types of sensors may
have biased observations and subject to non-Bernoulli distri-
bution, which complicates the design and analysis of LIFO-
based Bayesian filters. The directed interaction topologies,
due to the constraint of unidirectional communication, may
affect condition for the consistency of LIFO-DBF.
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