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Abstract— In autonomous driving, the ego vehicle and its
surrounding traffic environments always have uncertainties like
parameter and structural errors, behavior randomness of road
users, etc. Furthermore, environmental sensors are noisy or
even biased. This problem can be formulated as a partially
observable Markov decision process. Existing methods lack a
good representation of historical information, making it very
challenging to find an optimal policy. This paper proposes a
belief state separated reinforcement learning (RL) algorithm
for decision-making of autonomous driving in uncertain en-
vironments. We extend the separation principle from linear
Gaussian systems to general nonlinear stochastic environments,
where the belief state, defined as the posterior distribution of
the true state, is found to be a sufficient statistic of historical
information. This belief state is estimated by action-enhanced
variational inference from historical information and is proved
to satisfy the Markovian property, thus allowing us to obtain
the optimal policy using traditional RL algorithms for Markov
decision processes. The policy gradient of a task-specific prior
model is mixed with that of the interaction data to improve
learning performance. The proposed algorithm is evaluated in
a multi-lane autonomous driving task, where the surrounding
vehicles are subject to behavior uncertainty and observation
noise. The simulation results show that compared with existing
RL algorithms, the proposed method can achieve a higher
average return with better driving performance.

Index Terms— autonomous vehicle, Markov decision process,
uncertain environment, partially observable

I. INTRODUCTION

Decision-making is crucial for autonomous driving. How-
ever, the real-world driving environment is often aggravated
by uncertain knowledge and imperfect perception about how
the driving process evolves, making it hard to make the
right decision. Generally, there are two kinds of uncertainties
[1], [2], [3]: (i) process uncertainty and (ii) observation
uncertainty. The former refers to the unmodelled high-
order dynamics, parametric or structural errors, and behavior
randomness of road users. The latter refers to the noisy
sensor measurements. These problems of decision-making
under uncertainties can be mathematically formulated as a
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partially observable Markov decision process (POMDP) [4].
This setting is different from POMDP in the motion planning
field [5], which does not consider the uncertain parts in the
transition model and observation model.

Obtaining the optimal policy in a partially observable envi-
ronment is challenging. Some algorithms directly summarize
the historical information (e.g., past observations and actions)
into a hidden state with recurrent functions, such as the
deep recurrent Q-network (DRQN) [6] and the variational
RNN [7]. In essence, these methods estimate optimal value
function and policy function from noisy perception data [8],
[9]. However, they place a heavy burden on the recurrent
functions, which should tackle the following two problems
simultaneously: (i) learning state representation from the
historical sequential information, and (ii) learning to max-
imize the expected return using the learned representation.
Prior works [10], [11] have observed the “bottleneck of
representation learning ,” i.e., a large portion of the learning
capability would be spent on obtaining a good representation
of the observation space, which remarkably sacrifices the
policy performance [4]. Therefore, training a recurrent policy
stably and efficiently is still an open question in this end-to-
end framework.

Other methods [12], [13], [14], [15] aim to learn an
explicit latent dynamic model and then perform RL in the
model’s learned latent space, such as particle filtering RNN
[16] and generative forward model [17]. Interpretability in
decision-making is crucial under uncertain environments,
especially in autonomous driving [18]. However, both the
encoding result of RNN and the learned model’s latent state
are not interpretable. Furthermore, they provide no guarantee
or analysis on the optimality of the learned policy.

This paper aims to extend the separation principle to
consider both optimality and interpretability of decision-
making under uncertainties. The linear quadratic Gaussian
(LQG) is a special case of optimal control which satisfies the
separation principle [19]. The optimal policy for such a linear
Gaussian system can be separated into a Kalman filter and
a linear quadratic regulator for state estimation and control,
respectively. In this case, the feedback policy’s optimality is
theoretically guaranteed by the separation principle, which
equals to apply the estimated state in the partially observable
setting. However, this is not the case for nonlinear and non-
Gaussian systems. In essence, the separation principle takes
the sufficient statistic as a boundary to separate the state
estimation and control. Therefore, if we can build a Bellman
equation of sufficient statistics, the optimal policy could be
solved by standard RL techniques, no matter the system is



linear or nonlinear.
Inspired by the basic principle of separation principle, this

paper proposes a belief state separated RL algorithm for
decision-making of autonomous driving in uncertain environ-
ments. The main contributions of this paper are summarized
as follows:

1) A particular sufficient statistics, called belief state,
is estimated by action-enhanced variational inference
from historical information, which is proved to satisfy
the Markovian property and thus allows us to obtain
the optimal policy using standard RL algorithms for
MDP. The physical meaning of the learned belief
state is the distribution of the real state. Therefore,
compared with other POMDP studies solved by RL
algorithms [20], [21], our method can significantly
improve the interpretability by directly learning the real
state distribution.

2) Second, we propose the belief state separated RL
algorithm to obtain a nearly optimal policy of a gen-
eral stochastic system under partial observability. In
particular, we take the belief state as the input of the
value function and policy, and obtain the optimal policy
by directly solving the sufficient statistic’s Bellman
equation. In this way, the problem with uncertainties is
broken into two separate parts, a belief state estimator
and a deterministic controller. Unlike most existing
separated methods, such as LQG [19], the proposed
algorithm extends the separation principle from linear
Gaussian systems to general nonlinear stochastic sys-
tems.

3) Compared with existing POMDP studies [22], which
directly take historical observations and actions as
inputs, the belief-state based RL method can handle
the problem with process uncertainty and observation
uncertainty simultaneously. The proposed algorithm is
evaluated in a multi-lane autonomous driving scenario
with uncertain surrounding vehicles and shows better
average return and driving efficiency.

The rest of this paper is organized as follows: Section II
states the preliminaries. Section III introduces formulation
and implementation of the proposed method. The simulation
results are developed in Section IV. Section V summarizes
the major contributions and concludes this paper.

II. BELIEF STATE SEPARATED REINFORCEMENT
LEARNING FRAMEWORK

This section will discuss how to formulate the problem and
build Bellman equation of the sufficient statistic considering
process and observation uncertainties.

A. Problem Formulation

A general discrete-time stochastic system with two kinds
uncertainties is considered as the following:

xt+1 = f(xt,ut,ξt),

yt = g(xt,ζt),
(1)

where t is the current time, xt ∈ X ⊂ Rm is the state,
ut ∈ U ⊂ Rn is the action, ξt ∈ Rm is the process
uncertainty. yt ∈ Y ⊂ Rl is the measurement, ζt ∈ Rl
is the observation uncertainty, f(·) and g(·) describe the
environmental dynamic and the observation model with
uncertain parts, respectively.

Since the true state xt cannot be directly attained, and
the observation and action at the current time alone are not
enough to recover the environmental information accurately,
the policy π of systems in (1) should be represented as a
function of historical information ht, i.e., ut = π(ht), where
ht contains discrete-time sequence of historical observations
and actions:

ht
def
= {y1:t, u0:t−1} . (2)

However, the length of the policy input ht is time-variant,
which increases the difficulties of policy representing and
learning. Therefore, this paper replaces ht with a fixed-length
sufficient statistic as the state representation, extending the
optimality of the separation principle to general systems.
Moreover, the sufficient statistic is not unique. We choose
the conditional probability distribution of the accurate state,
denoted as bt, as the sufficient statistic for it is meaningful
and structurally concise. This kind of sufficient statistic is
also called belief state, which satisfies:

bt (xt)
def
= p (xt|ht) . (3)

Then the policy becomes ut = π(bt). From (3), it further
follows that:
bt (xt)

=
p(xt, yt|ht−1, ut−1)p(ht−1, ut−1)

p(yt|ht−1, ut−1)p(ht−1, ut−1)

=

∫
p(xt−1|ht−1)p(xt|xt−1, ut−1)p(yt|xt) dxt−1

p(yt|ht−1, ut−1)

=

∫
bt−1(xt−1)p(xt|xt−1, ut−1)p(yt|xt) dxt−1∫∫
bt−1(xt−1)p(xt|xt−1, ut−1)p(yt|xt) dxt−1 dxt

,

(4)

where p(xt|xt−1, ut−1) and p(yt|xt) correspond to the envi-
ronmental transition and the observation model in system (1).
Considering the existing uncertainties, we add extra objective
functions to make the belief update more suitable for the
task in the partially observable environment, which will be
introduced in the next section. Furthermore, the new bt can
be iteratively updated using bt−1,yt and ut−1 as following:

bt = Update(bt−1, yt, ut−1). (5)

Therefore, a belief-state model (BSM) is explicitly built as
a posterior distribution inference model with an underlying
state dynamical system, where the probabilistic sequential
model is shown in Fig. 1. The probability distribution of
belief state conditioned on the previous state and historical
information obeys the following equation:

p(bt|bt−1, yt, ut−1) = I(bt = Update(bt−1, yt, ut−1))

= p(bt|bt−1, ..., b0, yt, ut−1),
(6)

where I(·) is the discrete Dirac function. Obviously, the be-
lief state has the Markovian property, which can be regarded



as the state of a belief-based MDP. The Bellman equation
of belief state, which is a sufficient statistic learned with
parameterized neural networks, is built and solved to attain
the optimal policy.

Fig. 1: The probability graph model of belief state

B. Bellman Equation

The belief state satisfies the self-consistent relationship
and has the Bellman optimal equation:

V ∗(bt)=min
ut

{
E{lt|bt}+ γEbt+1∼p(bt+1|bt,ut){V

∗(bt+1)}
}
,

(7)
where the expectation, E(·), represents the instant reward
conditioned on historical information. Therefore, the ob-
jective function of the optimal control problem could be
formulated as:

V π (bt) = E

{ ∞∑
k=t

γk−tl (xk, π (bk)) |bt

}
. (8)

Thus, starting from time t, we can compute optimal actions
for each arbitrary history information, ht, by using optimal
value functions of belief state, bt, which satisfies:

π∗(bt) = arg min
ut

{
E{lt|bt}+

γEbt+1∼p(bt+1|bt,ut){V
∗(bt+1)}

}
.

(9)

C. Actor-Critic Framework

The optimal policy is calculated by approximating the
solution of the belief state’s Bellman equation under the
actor-critic framework. Parameterized networks, πω (bt) and
Vθ (bt), are utilized to approximate the policy and value
function, corresponding to the actor and critic, respectively.
They are optimized through the process of PEV and PIM.
PEV drives the estimated value towards the true value for
the current policy. PIM improves the policy according to the
estimation of value. PEV and PIM iteratively roll forward
and gradually converge to the optimal policy.

Remark 1: The proposed framework builds a connection
between stochastic system optimal control and belief-based
MDP. In the linear quadratic Gaussian setting, the sepa-
ration principle separates estimation and control, where the
estimation result is a kind of sufficient statistic and equals the
belief state under the framework of belief-based MDP. In the
latter context, the optimal policy could be directly attained
by solving the Bellman equation of the belief state and is
not limited by the form of the system. More generally, the
sufficient statistic is not unique, where the encoded latent

state is also an expression of the approximate sufficient
statistic without explicit semantic description.

III. ALGORITHM

In this section, an internal BSM is explicitly learned and
utilized to update the belief state, in which the historical
information, interaction data, and empirical process dynamic
are jointly considered. The primary motivation is to add
a belief optimizer in the training process to reduce the
instability only with the RL objective, as shown in Fig.2.
In contrast to prior works, our method learns the real state
distribution to improve the intrinsic interpretability and mixes
the gradients of the model and data to further improve the
algorithm performance.

Fig. 2: Belief state separated reinforcement learning algo-
rithm framework

A. Belief State Model

In order to apply the identified system in downstream
tasks, we perform belief dynamical identification. In the par-
tially observable setting, we do not have the full knowledge
of the real state’s transition model, xt. Therefore, the BSM
is trained by maximizing the log-likelihood of observation
samples:

max (y0:t|u0:t−1)

= logEb1:t∼q(·)
{p(b1:t, y1:t|u0:t−1)

q(b1:t|y1:t, u0:t−1)

}
≥ Eb1:t∼q(·)

{
log

p(b1:t|u0:t−1)p(y1:t|b0:t−1)

q(b1:t|y1:t, u0:t−1)

}
= Eb1:t∼q(·){log p(y1:t|b0:t−1)}−

KL[q(b1:t|y1:t, u0:t−1)||p(b1:t|u0:t−1)],

(10)

with
q(·) = q(b1:t|y1:t, u0:t−1), (11)

where the lower bound of (10) contains two terms: E[·]
describes the expectation of the mapping from belief state to
observation and KL[·] aims to shorten the distance between
the posterior inference, q(·), and the prior transition, p(·).
Since the observation is noisy, the second term, KL[·], can
be regarded as a regularization term to reduce the dependence
on the generative term of observation. Our objective function
of belief state has a similar structure as the basic evidence
lower bound [23], but we take action sequence into account
to enrich the historical information. We abbreviate the lower



bound of (10) as ELBO and expand it along time series with
parameterized form:

ELBO(Φ) = Eb1:t∼qφ(·)

{ t∑
i=1

log pϕ(yi|bi) + log pψ(b1)−

t−1∑
i=1

log qφ(bi+1|yi+1, bi, ui)− log qφ(b1|y1)+

t−1∑
i=1

log pψ(bi+1|bi, ui)
}
,

(12)
where Φ is the parameter set of the objective function,
{φ, ϕ, ψ} ∈ Φ, and is updated by maximizing (12). pϕ, pψ
and qφ correspond to observation model, process dynamic
model and inference model of belief state, respectively.

The information of task-specific prior is embedded in pψ
so that the prior becomes the driving factor for shaping
the belief state inference, rather than adjusting the real
state’s dynamic to the BSM. The prior satisfies pψ(bt) ∼
p (xt|xt−1, ut−1), as the grey line shown in Fig 1. This
operation guarantees the interpretability of belief state. Note
that bt is an approximate distribution of xt, and xt only
represents the prior deterministic knowledge of state.

B. Belief state separated reinforcement learning

Based on the belief state calculated by BSM, the value
functions and policy can be optimized iteratively with PEV
and PIM. Similar to Soft Actor-Critic (SAC) [24] algorithm,
neural networks are utilized to approximate value function,
Q-function and policy. In the process of PEV, value function
and Q-function are iteratively updated the same as SAC. The
loss function for value function is

JV (θ) = Eyt∼D
{1

2
(Vθ(bt)−(Qν(bt, ut)−

α log πω(ut|bt)))2
}
,

(13)

where θ, ν, ω are the parameters of value network, Q-network
and policy, respectively, D is the replay buffer and α is the
temperature parameter. The loss function for Q-function is

JQ(ν) = E(yt,ut)∼D

{1

2
(Qν(bt, ut)− Q̂(bt, ut))

2
}
,

(14)
with

Q̂(bt, ut) = lt + γVθ̄(bt+1), (15)

where θ̄ is the parameter of target value network.
In the process of PIM, the gradient information is vital

for the convergence of the RL algorithm. Although the
known model here is not accurate, it can be appropriately
utilized at the beginning to accelerate training. We adopt
a mixed gradient method in PIM to balance the inaccurate
model information and collected observation data. It mainly
concentrates on the model-based gradient at the beginning of
training while giving more weight to the data-based gradient
in the later period. The former can be obtained with n-step

Bellman recursion in (8):

Jπ,model(ω) = Eyt∼D,ut∼πω
{ n+t∑
k=t

γk−tl (bk, uk) +

γn+1V (bt+n+1)
}
.

(16)

The latter is calculated using the same method as SAC:

Jπ,data(ω) = Eyt∼D,ut∼πω
{
α log πω(ut|bt)−Qν(bt, ut)

}
.

(17)
Therefore, the policy objective could be written as:

Jπ,mix = ρpgJπ,data + (1− ρpg)Jπ,model. (18)

where the ρpg is the gradient weight between model and
data. The complete algorithm is described in Algorithm 1.

Algorithm 1: Belief state separated algorithm
Initialize network parameters θ, ν1, ν2, ω,Φ.
Initialize target network parameter θ̄ ←− θ.
Initialize iterative step k, update interval m, batch
size N, target smoothing coefficient τ , learning rates
βθ, βν , βω , βΦ, temperature coefficient α, mixed
weight ρpg .

Initialized the replay buffer D.
Initialize the environment, get the initial observation
y0 for agent.

for each iteration do
for each environment step do

Collect a transition (y, u, l, y′) using policy
πω and store it in the replay buffer D.

end
for each update step do

Sample N transitions from replay buffer D.
Update the belief model:
Φ←− Φ− βΦ∇ΦLbelief
// PEV based on the belief

state
Update the value network and Q networks:
ν ←− ν − βν∇νJQ(ν)
θi ←− θi − βθ∇θiJV (θi) for i ∈ {1, 2}
// PIM based on the belief

state
Update the policy network:
ω ←− ω − βω∇ωJπ,mix(ω)
Update target network:
θ̄i ←− τθi + (1− τ)θ̄i for i ∈ {1, 2}
Adjust temperature coefficient α and mixed

weight ρpg .
end

end

IV. EXPERIMENT

This section compares the proposed method with other
algorithms in the multi-lane scenario, where the uncertainties
exist in the behavior and observation of surrounding vehicles.



(a) Multi-lane scenario with uncertainties

(b) Lane-changing process

Fig. 3: Multi-lane scenario (a) represents typical scenario
with uncertainties existing in the surrounding vehicles. (b)
describes the process of once lane-changing according to the
reference target lane, where the number represents the lane
index.

A. Simulation Environment

We focus on a typical three-lane scenario, as shown in
Fig. 3 (a). We regard state transitions of ego vehicle and
surrounding vehicles as a whole:[

xselft+1

xsurrt+1

]
=

[
fself (xselft − xref , ut)

fsurr(xsurrt , ξt)

]
,[

yselft+1

ysurrt+1

]
=

[
gself (xselft )

gsurr(xsurrt , ζt)

]
,

(19)

where fself is ego vehicle’s (blue cars in Fig. 3) dynamic
model. It consists of the bicycle model with a linear tire
model and is discretized with the backward Euler method
[25]. The corresponding observation model gself is accurate.
The partially observable settings are reflected in the facts
that the model of surrounding vehicles (grey cars in Fig. 3)
fsurr is uncertain and there exists observation noise in gsurr.
The surrounding traffic flow is generated by the Simulation
of Urban Mobility (SUMO) platform. Here, we assume
the prior model of surrounding vehicles is a longitudinal
model with uniform velocity, while in fact, they can both
achieve longitudinal acceleration or deceleration and lateral
movements.

For state space, the xsurr contains position and velocity
of the nearest 6 surrounding vehicles with noise. If the
number of surrounding vehicles is less than 6, virtual vehicles

are added at the boundary of perception range. The xself

contains ego vehicle’s relative position, velocity, heading
angle and yaw rate with target lane, xref , where the xref is
chosen by the trained value network, as shown in Fig. 3 (b).

We choose the acceleration and steering angle as actions
and suppose that they are strictly limited to a reasonable
bound. In total, we construct 27-dimensional continuous
state space (18-dimension for surrounding vehicles and 9-
dimension for ego vehicle) and 2-dimensional continuous
action space.

The reward function is designed to simultaneously con-
sider driving safety, stable speed and tracking performance
of the target lane. This task is constructed in an episodic
manner, where terminal conditions contain: collision, out of
lane, steering angle, or tracking error out of bound and task
completion.

B. Algorithm Details

We compare the proposed algorithm with the RNN-based
method to evaluate the advantages of the belief state. The
explicit semantic description of bt is reflected in which the
dimension of belief states is the same as the real states,
corresponding to the state distribution. Table I describes the
algorithm settings of the proposed method and baselines, i.e.,
• BFMIX: the belief state, bt, is described by BSM, the

gradient weight, ρpg , in (18) is time-variant from 0 to
1.

• BFSAC: the belief state, bt, is described by BSM, and
the gradient weight, ρpg , in (18) is 1.

• RNNSAC: the historical information, ht, is encoded
by the Gate Recurrent Unit (GRU), and the gradient
weight, ρpg , in (18) is 1.

TABLE I: Algorithm Setting

Algorithm Sufficient statistic Gradient Information
BFMIX(variant ρpg) Belief Model prior model and data

BFSAC(ρpg = 1) Belief Model only data
RNNSAC RNN encode only data

The belief-based method has an explicit belief model to
describe the real state distribution, approximated by multi-
layer perceptron (MLP) with two hidden layers. The RNN-
based method utilizes the GRU to encode historical infor-
mation and generate latent states. The value function (of
state and state-action) and policy function are approximated
by MLP with three hidden layers. Besides, we use MLP as
the feature net to encode surrounding vehicles with different
input orders. See Table II for more details.

C. Result Analysis

1) Performance comparison: The comparative perfor-
mance of algorithms are shown in Fig. 4. The results show
that the belief-based methods (BFMIX and BFSAC) obtain
a higher mean concerning the average return than the RNN-
based method (RNNSAC). Compared with the encoded state



TABLE II: Training hyperparameters

Item Value
Replay Buffer Size 1e6
Sample Batch Size 32

Hidden Layers Activation ReLU
Number of Hidden Units 128

Optimizer Type Adam
Actor Learning Rate 3e-4
Critic Learning Rate 3e-4

Learning Rate Schedule Anneal linearly to 1e-5
Discount Factor γ 0.99

Target Update Rate τ 0.005
Temperature α Init = 0.2, auto tune mode

Expected Entropy -Action Dimensions

Fig. 4: Average return during the training process. The solid
lines and the shaded regions correspond to the mean and
98% confidence interval over three runs, respectively.

of RNNs without explicit semantic description, the expres-
sive ability of the belief state to real state improves the
algorithm performance. Although the convergence rate of
BFMIX is reduced in the early period affected by the gradient
of the inaccurate prior model, compared with BFSAC, the
average return is higher at the convergence stage. It could
be explained that the task-specific prior model helps to
accumulate more effective interactive data to some degree.

2) Simulation result: We compare different policies of the
above algorithms in twice lane-changing processes, as shown
in Fig. 5. The dynamic trajectory of the ego vehicle and the
position of surrounding vehicles within the observation range
at different times are shown in Fig. 5 (a). It can be figured out
that in the same period, the policy of BFMIX can make the
vehicle drive further distance by lane-changing decision. The
policies of BFMIX and BFSAC can perform two complete
lane-changing processes, while that of RNNSAC hesitates
at the first time. According to the speed distribution of
different algorithms in Fig. 5 (b), the average speed of the
belief-based method is higher, where the average speed of
BFMIX, BFSAC, and RNNSAC are 17.13m/s, 16.49m/s, and
16.02m/s, respectively. It can be concluded that the belief
state could improve the algorithm performance with better
driving efficiency.

3) Belief: The advantage of the belief state is the explicit
physical meaning, which is crucial to the interpretability in
control. As shown in Fig. 6, the belief state can describe
the distribution of real state better, while the encoded output

(a) Dynamic trajectories of different algorithms

(b) Distributions of longitudinal speed

Fig. 5: State analysis in Multi-lane scenario

of RNNs is not a one-to-one map of the real state and has
no explicit physical meaning. Moreover, we utilize MLPs to
express the belief state, the parameter number of which is
much smaller than that of RNN.

(a) Belief approximation of speed

(b) Belief approximation of position

Fig. 6: Interpretability of belief state



V. CONCLUSION

This paper proposed a belief state separated reinforcement
learning algorithm for autonomous driving under uncertain
environments, where an action-enhanced variational infer-
ence method was utilized to learn an explicit belief-state
model from non-Markovian historical data. It performed
sufficient statistics identification and extended the separation
principle from linear Gaussian systems to general nonlinear
systems, which allows obtaining the optimal policy for
POMDP problems using standard RL algorithms for MDPs.
Simulation results in the multi-lane autonomous driving
tasks, which contained behavior uncertainty and observation
noises of surrounding vehicles, showed that our algorithm
improved the average learning return with better driving
performance.
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