
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

1939-1390/20©2020IEEEIEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  2  •  MONTH 2020

Eco-Driving Operation 
of Connected Vehicle 

With V2I Communication 
Among Multiple Signalized 

Intersections

Digital Object Identifier 10.1109/MITS.2020.3014113
Date of current version: 17 September 2020

Qingfeng Lin
Is with the School of Transportation Science and Engineering, Beihang University,  

Beijing. Email: linqf@buaa.edu.cn

Shengbo Eben Li*
Is with the State Key Lab of Automotive Safety and Energy,  

Department of Automotive Engineering, Tsinghua University,  
Beijing. Email: lisb04@gmail.com

Shaobing Xu
Is with the Department of Mechanical Engineering, University of Michigan, Ann Arbor.  

Email: xushao@umich.edu

Xuejin Du
Is with the School of Transportation Science and Engineering, Beihang University,  

Beijing. Email: 15201316042@163.com

Diange Yang
Is with the State Key Lab of Automotive Safety and Energy,  

Department of Automotive Engineering, Tsinghua University, Beijing.  
Email: ydg@tsinghua.edu.cn

Keqiang Li
Is with the State Key Lab of Automotive Safety and Energy,  

Department of Automotive Engineering, Tsinghua University,  
Beijing. Email: likq@tsinghua.edu.cn

*Corresponding author

XXXXXXX

Authorized licensed use limited to: Tsinghua University. Downloaded on December 02,2020 at 05:50:19 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  3  •  MONTH 2020IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  3  •  MONTH 2020

C
onnected vehicle technologies have the ability to 
significantly improve traffic mobility and safety, 
enabling information exchange between the vehicle 
and the infrastructure (V2I) through wireless com-

munication. Apart from reducing unimpaired crashes, 
it also combines with automated vehicles to fulfill more 
functions, such as emergency braking, remote diagnostics, 
and eco-driving [1].

Two different approaches generally have been adopted 
to apply experienced driving skills to eco-driving projects. 
First, fuel-saving skills were taught through driver educa-
tion, fuel-gauge feedback, and real-time monitoring [2]–[5]. 
Second, fuel-saving tips were implemented in advanced 
driver assistance systems, such as cruise control, adaptive 
cruise control, or even autonomous driving systems. A firm 
understanding of fuel-saving strategies is critical for both 
approaches. One way to acquire fuel-saving strategies is to 
parse the general rule from a large quantity of driving data 
collected from experienced drivers. A host of eco-driving 
projects have employed this method and generated a vari-
ety of eco-driving tips, such as accelerating smoothly and 
eliminating excessive idling [6]–[8]. These tips are qualita-
tive and cannot ensure optimality in any sense; they can be 
used for driver education but are not ready for implementa-
tion in vehicle control. Another way to obtain fuel-saving 
strategies is to extract fuel-saving rules directly from the 
powertrain dynamics and engine fuel characteristics. For 
example, Li and Peng [9] identified an optimal fuel operat-
ing strategy of car-following scenarios. It was found that 
the optimal strategy of the following vehicle changes from 
partial pulse-and-gliding operation to regular pulse-and-
gliding operation, and finally to constant speed operation 
as the leading vehicle’s speed increases. Li et al. [10], [11] 
further examined the periodic operation for internal com-
bustion engine-based vehicles in free-driving scenarios. 
By using the π-test, Li et al. [11] found the fuel-saving 
mechanism is essentially caused by singular arcs due to 
the S-shaped engine fueling rate. 

Another typical scenario is driving through multiple 
signalized intersections, for which the past researches 
that target its eco-driving strategies usually use two types 
of approaches. One approach is based on empirical rules 
(such as reducing idle time at intersections) and uses many 
traffic simulations to verify its effectiveness. It can be easi-
ly implemented, but the results cannot guarantee optimal-
ity. For example, Sato et al. [12] focused on the strategy of 
early upshifting transmission gears, and the experimental 
results demonstrated that this strategy could achieve a re-
duction of 15–34% in CO2  emissions.

The second approach is based on optimization meth-
odologies, such as the Dijkstra algorithm or dynamic pro-
graming (DP), and converts the problem of economically 
passing through intersections into an open-loop optimal 
control problem that aims to minimize fuel consumption. 
It can numerically calculate the accurate vehicle trajectory 
at signalized intersections; however, the heavy computa-
tion load poses challenges in practical deployment. 

For instance, Thomas and Voulgaris [13] employed the 
Dijkstra algorithm to compute the optimal path. It deliv-
ers the optimal speed trajectory, but the assumption that 
the vehicle travels between two intersections at a constant 
speed is not realistic because the vehicle would accelerate 
or decelerate during the traveling process [13]. De Nunzio 
et al. [14] found energy optimal velocity profiles for a vehicle 
in urban traffic by proposing a preliminary velocity prun-
ing algorithm to identify a feasible region under city speed 
limits, and then a velocity trajectory advised by Dijkstra 
algorithm allows the vehicle to pass through the signal-
ized intersections without stopping. Kamalanathsharma 
and Rakha [15] used a multistage DP to compute a fuel-
optimal vehicle trajectory by receiving traffic signal infor-
mation, and the results of simulations suggested that it can 
save fuel for multiple intersections in the range of 19% and 
travel time in the range of 32%. Kamalanathsharma and 
Rakha [16] used a moving horizon dynamic programming 
approach to optimize the trajectory of a vehicle approach-
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ing an intersection. Rakha and Kamalanathsharma [17] 
proposed a DP-based fuel-optimization strategy to gener-
ate fuel-efficient vehicle trajectories in the vicinity of traffic 
signalized intersections by controlling the vehicle variable 
limiting speed to minimize fuel consumption. This work 
was further extended to integrate queue estimation [18].

Zeng and Wang [19] presented the optimal speed plan-
ning solution based on DP for a vehicle running on a giv-
en route with multiple stop signs, traffic lights, turns and 
curved segments, roads of different grades and speed limits. 
Schuricht et al. [20] proposed a predictive driver assistance 
system based on the transmission of traffic light control-
ler information to the approaching vehicle and uses the 
distance to a virtual stop line and time to a queue-cleared 
intersection to calculate an energy-efficient speed profile. 
Xia et al. [21] considered dynamic eco-driving in an arterial 
corridor by providing signal phase and timing (SPaT) infor-
mation of traffic lights to the vehicle so that it could adjust 
its velocity with the goal of minimizing fuel consumption, 
thereby reducing individual vehicle fuel consumption by 
about 10–15%. Sun et al. [22] developed a dynamic eco-driv-
ing speed guidance strategy (DESGS), which adopted a roll-
ing horizon optimization and a DP approach to generate the 
most fuel-minimized speed profile for a vehicle approaching 
signalized intersections. It was found that the fuel consump-
tion could be reduced by approximately 25% for vehicles 
with DESGS as compared to vehicles without speed guid-
ance [22]. A speed advisory system (SAS) for reducing idling 
at red lights has been proposed [23], and results showed that 
the fuel consumption of both SAS-equipped vehicles and 
other conventional vehicles in a fleet decreased and that 
the fleet fuel economy improved with the increment of the 
percentage of SAS-equipped vehicles. In addition, Tang et 
al. [24] developed an extended car-following model account-
ing for remaining green time to study the driving behavior, 
fuel consumption, and emissions of each vehicle during the 
whole process of running across a signalized intersection.

On the whole, these methods rely on the optimization 
method and use vehicle connectivity to acquire traffic SPaT. 
To enhance computational efficiency, they use either simple 
vehicle dynamics or simple fuel consumption models. For in-
stance, the simple fuel consumption model cannot embody 
real fuel consumption, as it ignores the powertrain dynam-
ics and is just a function of speed and/or acceleration. Thus, 
both the simplified fuel consumption model and the vehicle 
longitudinal dynamics model will result in a high error in 
vehicle speed trajectory prediction for multiple intersections.

Some recent studies on eco-driving have considered both 
accurate vehicle dynamics and powertrain operation in sce-
narios such as car-following or cruising control. However, 
in eco-driving design, vehicle powertrain dynamics are 
often neglected to simplify the problem formulation. For 
example, Jin et al. [32] proposed a power-only–based longi-
tudinal control algorithm for connected eco-driving to pass 

through one single signalized intersection. Ozatay et al. [25] 
investigated an analytical solution to the fuel-minimized 
problem when facing one single traffic light and assumes 
that the vehicle travels only at a constant acceleration or de-
celeration, which is less realistic. 

This article explores the eco-driving operation 
through multiple signalized intersections by consider-
ing more realistic powertrain dynamics. The vehicle 
dynamic model directly includes the engine and the 
transmission as well as aerodynamic drag and rolling 
resistance. This allows the model to describe dynamic 
behaviors and fuel characteristics in acceleration, decel-
eration, and constant speed driving. The open-loop opti-
mal control problem of a vehicle passing through a single 
section (bounded by two red-signalized intersections) is 
first formulated. Then we propose a two- or three-stage 
operation rule to approximate its optimal solution, and 
then apply them from a single section to multiple inter-
sections. Finally, the Dijkstra algorithm is used to  search 
the optimal parameters of the proposed operation rule for 
minimizing fuel consumption.

Eco-Driving Operation Between Two Intersections
Here we focus on a single section to explore the basic eco-
driving operations, i.e., the driving rules minimizing the 
fuel consumption when passing through two red-signal-
ized intersections. These strategies will then be extended 
from two intersections to multiple intersections in the 
next section.

Fuel Minimum Optimal Control Problem for a Single Section
The studied vehicle used an internal combustion engine 
(ICE) and a continuously variable transmission (CVT). The 
ICE was a four-cylinder 2.0-L gasoline engine. To achieve 
the optimal operation, the eco-driving task was formulated 
as an optimal control problem (OCP) [26]–[27]:
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where Qs  is the instantaneous fuel injection rate, and t f  
is the terminal time, which is a free variable (depending 
on the vehicle speed). The state vector is ;,x s v T= ^ h  the 
control input is the engine power ;Pe  s is the travel dis-
tance between two intersections; v  is the speed; Teco  is the 
engine torque; weco  is the engine speed; and ig  is the CVT 
gear ratio. The other parameters are listed in Table 1.

Due to the nonlinearity in the cost function and vehicle 
dynamics, the OCP is difficult to solve analytically. Here 
we will adopt the Legendre pseudospectral (LPS) method 
to convert the OCP to a nonlinear programming problem 
and solve it using the mature toolbox SNOPT [27]–[31]. 
The order N of the Legendre polynomials is not fixed and 
can be set to roughly 20–80; we used 30 in this article. 
The initial values of the resultant optimization problem 
are set to 0.

Optimization Results
An example of eco-driving between two red-signalized 
intersections with different distance is presented in Fig-
ure 1. The speed limit is set to 30 m/s. The results show that 
the vehicle travels under either an acceleration–decelera-
tion process (called the two-stage mode) or an accelera-
tion–cruising–deceleration process (called the three-stage 
mode). More specifically, for a certain speed limit, a turn-
ing point exists where the eco-driving operation changes 
from the two-stage to the three-stage mode. Here we sum-
marize [26], [27]:

 ■ Under an arbitrary speed limit, the eco-driving opera-
tion is that the vehicle travels under the two-stage mode 
if the distance between the two red-signalized intersec-
tions is less than a certain distance.

 ■ Under an arbitrary speed limit, the eco-driving op-
eration switches from the two-stage to the three-stage 
mode when the distance between the two red-signal-
ized intersections is greater than a certain distance 
threshold.
We also found that the eco-driving operations were sim-

ilar when comparing the various speed trajectories, espe-
cially in the acceleration/deceleration process, i.e., similar 
acceleration profiles even if the distance between two in-
tersections changes significantly (see Figure 1). 

The Two- or Three-Stage Operation Rule
The two- or three-stage operation rule is proposed as the 
quasi-optimal method for a fast speed trajectory. The idea 
of the three-stage operation rule is illustrated in Figure 2. 
Some facts are listed here [26], [27]:

 ■ The constant cruising speed )(vc  is determined by the 
economical speed ( ;veco  the cruising speed at which the 
car achieves the highest fuel economy), calculated from 

Parameters Meaning Value

CA .C C A0 5A D a vt= 0.43

CD The aerodynamic drag coefficient 0.316

at The air density 1.2258

Av The frontal area of the vehicle 2.22

M The vehicle mass 1,600 kg

f The coefficient of the rolling resistance 0.028

d The lumped rational inertial coefficient 1.2

g The gravity coefficient 9.8 m/s2

Th The mechanical efficiency of the powertrain system 0.9

c The fitting parameters 1/3

keco The fitting parameters 11.133 g/s

b The fitting parameters 1,000

i0 The gear ratio of the final drive 3.863

rw The wheel radius 0.307 m

c The fitting parameters 30

ke The correction coefficient for transient operations 8 ×10 4-

a0 The fitting parameters 3.048

a1 The fitting parameters 0.0905

a2 The fitting parameters 0.00148

P mine The minimum value of the engine power 0 kW

P maxe The maximum value of the engine power 126 kW

i ming The minimum value of the gear ratio 0.5

i maxg The maximum value of the gear ratio 2.8

Table 1. The key parameters of vehicle dynamics.
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FIG 1 The vehicle speed profiles under different travel distances solved by 
the Legendre pseudospectral method. 
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engine map and vehicle parameters) and the speed limit 
)(vmax  according to (2):

 , .minv v vmaxc eco= " ,  (2)

 ■ Because the initial speed ( )v 0 m/sa0 =  and final speed 
( )v vcaf =  in the acceleration stage are determined, the 
acceleration process can be acquired according to the 
economical acceleration profiles, determined by the 
maximum acceleration and acceleration.

 ■ Similarly, since the initial speed ( )v v d c0 =  and the fi-
nal speed (  )v 0 m/sdf =  of the deceleration stage are 
determined, the deceleration process can also be ac-
quired according to the economical deceleration pro-
files, which is the free-coasting operation. Note that by 
following the known economical acceleration/decel-
eration profiles, the global optimality is lost, but it is a 
near-optimal and computationally efficient strategy. 

 ■ Excluding the acceleration/deceleration stages, the 
remaining distance is traversed in the constant speed 
stage. The final speed ( )vaf  of the acceleration stage 
and the initial speed ( )vd0  of the deceleration stage are 
equal to vc, i.e.,

 .v v vc d0af= =   (3)

With the previous steps, the whole three-stage opera-
tion rule is formed, whose total fuel consumption is calcu-
lated as follows: 
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where vaf  is the final speed of the acceleration stage; taf , 
,tcf  and tdf  are the final times of the acceleration stage, the 

constant-speed stage, and the deceleration stage, respec-
tively; ,Ja  ,Jc  and Jd  denote the fuel consumption in the 
acceleration, constant speed, deceleration stages respec-
tively; qs  is the engine instant fuel injection rate; vaf  is the 
final speed in the acceleration stage; Sa  is the traveling 
distance in acceleration stage; ET  is the equivalent fuel 
consumption per unit velocity increment; and qs  is the en-
gine instant fuel injection rate.

The two-stage operation rule is a predigestion of the 
three-stage operation rule performed by removing the 
constant-speed cruising stage. This rule fits the scenario 
where the distance between two intersections is less than 
a threshold, as illustrated in Figure 2.

Comparison Between the Optimization Results and the Quasi-
Optimal Operations
To demonstrate the effectiveness of the three-stage opera-
tion rule, we carried out simulations of different distances 
from 1,000 m to 8,000 m and compared the fuel consump-
tion and total computation time of the two methods. If 
Q1  and Q2  are used to represent the fuel consumption 
of the three-stage operation rule and the LPS optimiza-
tion method, respectively, the fuel consumption error 

 /Q Q Q Qerror 1 2 2= -^ h6 @ of the three-stage operation rule 
is less than ±1.5% [22], [23]. For the computing load, using 
T1  and  T2 to represent the computation time of the three-
stage operation rule and the LPS optimization method, 
respectively, we then found that the T  ratio ( / )T T2 1=  be-
longs to the interval of (200,500), meaning that the three-
stage operation rule is about hundreds of times faster than 
the two-stage rule [26], [27]. 

Eco-Driving Operation of a Vehicle Passing Through 
Multiple Intersections
Figure 3 is a schematic diagram of vehicles passing through 
multiple intersections. The information between vehicles 
and traffic signals are transferred using V2I technology. The 
red line in Figure 3 represents the red light, and the vehicles 
can pass the intersections at either a green or yellow light.

Because of the dynamically varying signal phase, the 
three-stage operation rule between two red-signalized in-
tersections proposed in the previous section cannot be ap-
plied directly to solve the eco-driving problem of passing 
through multiple intersections. Therefore, we will split the 
latter problem into several subproblems.

In this section, we elaborate on how to use the Dijkstra 
algorithm to acquire fuel-minimized driving of the vehicle 
passing through multiple intersections. The Dijkstra algo-
rithm can find the shortest path (from an origin node to 
any other node) in a graph with non-negative edge costs. 
For implementation, we modeled the eco-driving problem 
in the following ways:
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FIG 2 The vehicle speed profiles under different distances solved by the 
quasi-optimal strategy. 
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 ■ A series of feasible speed trajectories with different 
speed limits (or the cruising speed in the three-stage 
mode) was generated by presenting the three-stage op-
eration.

 ■ By transferring these feasible paths into an adjacency 
list, we searched the optimal one among all feasible 
paths.

 ■ The resultant fuel-minimized driving of passing 
through multiple intersections was defined as the vari-
able speed driving strategy.

Decomposition of Passing the Multiple Intersections
As an example, Figure 4 demonstrates a road with three 
signalized intersections. Applying the three/two-stage op-
eration rule designed for two red lights, we can decompose 
the multiple-intersections problem into several two-inter-
section subproblems and then search the optimal speed 
trajectory.

If applying the three-stage operation rule to solve the 
optimal solution of the multiple-intersections problem, 
four situations can happen, as demonstrated in Figure 4:

 ■ If all three signal lights are red, the vehicle speed path 
is ➀ ➁ ➂.

 ■ If the first signal light is green, and the others are red, 
the vehicle speed path is ➃ ➂.

 ■ If the second signal light is green, and the others are 
red, the speed path is ➀ ➄.

 ■ If the first and second signal lights are green, and the 
third is red, the speed path is ➅.

Vehicle Speed Adjustment of the Three-Stage Operation Rule
To be more flexible, the two- or three-stage operation rule 
can be changed slightly to adapt to the dynamic traffic 
lights, e.g., the initial speed, the final speed, and the con-
stant cruising speed can vary from zero to a minimum val-
ue of either economical speed or the road speed limit. By 
this strategy, we can manipulate the travel time between 
two intersections.

When the distance between two signalized intersec-
tions is fixed, the three-stage modes with different final 
times are acquired by changing the final speed or the 
cruising speed of the three-stage operation. This operation 
transfers the discretization of time into the discretization 
of the final speed or the constant speed of the three-stage 
operation. Therefore, the different time nodes can be 
formed at each signalized intersection, and the different 
travel routes can be optimized from all feasible candidates.

Figure 5 is a schematic map of the three-stage operation 
rule with different speed changes. There are four modes 
in total for the speed adjustment. The first mode and sec-
ond mode change the initial speed and the final speed, re-
spectively, as illustrated in Figure 5(a) and (b). The third 
mode changes both the initial speed and the final speed, 
as illustrated in Figure 5(c). The fourth mode changes only 

the constant speed, as illustrated in Figure 5(d). With the 
four modes, although the whole traveling distance is fixed, 
the travel time can freely change. For example, as demon-
strated in Figure 5(a) and (b), the area ,A A1 2=  the initial/
final speed can be varied from 0 m/s to ,/v vb f  and then the 
whole travel time is decreased. 

Variable Speed Driving Strategy

Feasible Paths for Optimal Fuel Consumption
As illustrated in Figure 6, we here design a directed graph 
for eco-driving speed design with the known structure of 
the three-stage rule. Between two adjacent interactions, 
we can use the three-stage rule with different speed set-
tings and travel time, as presented in the previous sec-
tion, to generate a lot of speed trajectory candidates. Each 
trajectory forms a node, depicted as Nodes 2, 3, 4, and 5 
in Figure 6. If the time node is in the time duration of 
a red light, the final speed of the three-stage operation 
rule is set to 0 m/s (e.g. Node 4). If in the duration of a 
green light, the final speed is greater than 0 m/s (e.g., 
Node 2). In addition, the constraint in speed continuity 
should also be considered and satisfied, e.g., the final 
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FIG 3 A schematic fuel-saving path map of a vehicle passing through 
multiple intersections. 
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speed of the first section (Nodes 1 and 2) should be equal 
to the initial speed of the next section (Node 2–6). There-
fore, a series of feasible paths can be established with 
the consideration of speed continuity. Figure 6 presents 
a schematic map of all feasible paths, and ,d1  ,d2  and d3  

represent the position of three intersections, respective-
ly. The solid red line is the time duration of the red light. 
The red and green circles denote the arrival points at the 
intersections. Node 1 is the current vehicle position, and 
Node 10 is the destination. The solid black line represents 
only a few feasible paths. Nodes 6, 7, and 9 are connected 
to Node 10 finally.

Search for the Eco-Driving Speed Trajectory Based on the 
Shortest Path Method
Figure 6 could be simplified to a directional graph with 
weights defined as fuel consumption, as presented in Fig-
ure 7. The red nodes represent that the car will meet red 
lights, and the green nodes represent the time duration of 
green lights. For the former case, the vehicle needs to wait 
until the green light is on before launching. For example, 
Node 4 in Figure 7 can be connected only to Node 5. The 
fuel consumption between two nodes can be calculated by 
(4). The fuel consumption of idling can be calculated by (5), 
such as q45  and :q89
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FIG 5 A schematic map of the three-stage operation rule with different speed changes. (a) The initial speed change mode. (b) The final speed change 
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where Jidle  is the idle fuel, and ti  and t j  are the initial and 
final times.

Since the eco-driving problem was transformed into a 
standard directed graph, we could use the shortest path 
method to search for the optimal path. In the present study, 
we applied the Dijkstra algorithm to solve the formulated 
eco-driving problem. Because of the advantage of storing 
a sparse matrix, the adjacency list is used to store the rela-
tion and weight between different nodes in Figure 7. The 
adjacency list C1 of Figure 7 is given in (6). The first and 
second rows represent the initial and final node of each 
path, respectively, and the third row is the fuel consump-
tion between two nodes. For numerical simulations, we 
can acquire more nodes by discretizing initial speed, fi-
nal speed, or constant speed more intensively to gain more 
precise results.
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Simulation Analysis and Results
Based on the method established in the previous section, 
the simulations were run with a desktop PC equipped with 
an Intel Core i5-4570 CPU at 3.20 GHz and 8 GB of RAM. 
To understand the benefits of the proposed variable speed 
driving strategy, it is compared with the constant speed 
driving strategy, which assumes that a vehicle travels only 
at a constant speed between two intersections [13].

Comparison of the Variable Speed and Constant Speed  
Driving Strategies
Both urban and suburban environments are designed 
to compare the variable speed driving strategy with the 
constant speed driving strategy. For the variable speed 
driving strategy, the discretized speed interval for final 
speed and constant speed is 3 m/s in both environments, 
and the maximum speed (speed limit) in urban and sub-
urban environments is set to 20 and 30 m/s, respectively. 
For the constant speed driving strategy, the discretized 
interval of time is 6 s (the gap of two nodes at a certain 
intersection) in both environments. The distance be-
tween intersections and the traffic light phases are listed 
in Table 2:

Figures 8 and 9 demonstrate the traveling trajectories 
solved using the two driving strategies in urban and sub-
urban environments. Figures 10 and 11 present their speed 
profiles. The solid multicolored line represents the vari-
able speed driving strategy, and the solid red line, solid 
green line, and the solid green line depict the accelera-
tion, constant speed, and deceleration stages, respectively. 
The dashed black line indicates the constant speed driving 
strategy. For the variable speed driving strategy, the vehi-
cle idles for 2 s at the fourth intersection in urban environ-

ments (Figure 8), in suburban environments the vehicle 
idles for 30 s at the first intersection and for 2 s at the fourth 
intersection (Figure 9).

In suburban environments, at the first intersection, the 
vehicle decelerates to 0 m/s first and then accelerates to 
23.0 m/s under the variable speed driving strategy. The 
speed profile is continuous at all intersections. However, 
this feature cannot be guaranteed by the constant speed 
driving strategy. We can see that at the fourth intersection, 
the velocity suddenly jumps from 22.9 m/s directly to 25.8 
m/s. The step–change speed of the constant speed driving 
strategy indicates that this driving strategy is less accurate 
and cannot be applied in reality. In contrast, the variable 
speed driving strategy, which considers the acceleration 
and deceleration process, is more realistic for actual ve-
hicle control. 

Table 3 presents the comparison of the fuel consump-
tion results between the variable speed driving strategy 
and constant speed driving strategy in both environments. 
Compared to the constant speed driving strategy, the vari-
able speed driving strategy saves 9.87% of the fuel, albeit 
with a 15.76% increase in travel time in urban environ-
ments. Similarly, although the variable speed driving strat-
egy consumes more travel time (60.47%), it saves 3.8% of 
the fuel in suburban environments. We emphasize that the 
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FIG 7 A directed network graph. 

Intersection 
Number

Green Light 
Duration (s)

Red Light 
Duration (s)

Distance Between Two 
Intersections (m)

Urban Suburban

1 20 30 600 1,000

2 30 40 700 1,100

3 60 70 600 1,200

4 40 60 1,000 1,100

5 50 70 800 1,500

6 0 +∞ 1,000 1,200

Table 2. The distance and green/red time duration in urban 
environments.
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constant speed driving strategy does not consider the ac-
celeration and deceleration during the traveling process. 
The lack of acceleration and deceleration reduced the trav-
el time in the simulation, and the real travel time and fuel 
consumption must be higher than the simulated values.

Simulation With a Different Setting
In this section, we modified the traffic phases slightly to 
show the fuel economy. The changes are listed here:

 ■ In the urban environments, the end time of the sec-
ond red light at the fourth intersection is reduced from 
200 to 190 s; that is, the time duration of the red light is 
changed from 60 to 50 s, shown as the dashed red circle 
in Figure 12.

 ■ In the suburban environments, the third red light time 
duration at the first intersection, the third red light time 
duration at the fourth intersection, and the second red 
light time duration at the third intersection are changed 
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FIG 9 The traveling trajectories of the variable speed and constant speed 
driving strategies in suburban environments.

0 50 100 150 200 250 300 350 400
0

500
1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000

Variable Speed Rule:

Constant Speed Rule:

Acceleration Constant Speed 
Deceleration

Only Constant Speed 

Time (s)

D
is

ta
nc

e 
(m

)

FIG 8 The traveling trajectories of the variable speed and constant speed 
driving strategies in urban environments.
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FIG 11 The speed profiles of the variable speed and constant speed driving 
strategies in suburban environments.

Authorized licensed use limited to: Tsinghua University. Downloaded on December 02,2020 at 05:50:19 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  11  •  MONTH 2020IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  10  •  MONTH 2020

from 30 to 10 s, from 60 to 50 s, and from 70 to 50 s, re-
spectively.
Figures 12 and 13 demonstrate the new traveling tra-

jectories; Figures 14 and 15 present the new vehicle speed 
profiles. With Change 1 as indicated by the red dashed 
circle in Figure 12, there is no longer any idling time. 
With Change 2 as indicated by the red dashed circles in 
Figure 13, the related lasting idling can also be removed.

Table 4 presents the comparison of the new fuel con-
sumption results with the changed traffic light settings. 
In the urban scenario, the variable speed driving strategy 
consumes 14.50% more travel time and saves 10.14% of the 
fuel, whereas the two values were 15.76 and –9.87% in the 
original setting. Similarly, in the suburban environments, 
compared to the constant speed driving strategy, the vari-
able speed driving strategy consumes 55.67% more travel 
time and saves 5.04% of the fuel, changed from 60.47 and 
–3.80%. Based on these results, we can find that the differ-
ent driving strategies’ performance may change a lot under 
different traffic phase settings.

Conclusions
This article studied the fuel-saving operation for a vehicle 
passing through multiple signalized intersections. The 
open-loop optimal control problem that describes a vehicle 
traveling between two red-signalized intersections was 
formulated first and then numerically solved by the Leg-
endre pseudospectral technique. The two- or three-stage 
operation rule was proposed to approximate the numeri-
cal solutions for fast computation. The fuel-saving opera-
tion for multiple intersections was solved by combining the 
two- or three-stage operation rule and the Dijkstra algo-
rithm. Simulation results demonstrate that compared to the 
constant speed driving strategy, this method can save more 
fuel and create more realistic instantaneous speed changes 
when the vehicle passes through multiple signalized inter-
sections. Practical applications of the findings may include 
automatic drive systems and some fuel-oriented driving as-
sistance systems. 

The present study can be extended to more research 
directions. One typical topic is the eco-driving strategy 
design for a fleet rather than for a single vehicle, which 
may improve the systematic fuel efficiency. Another poten-

tial topic is the optimization of a mixed fleet with a cer-
tain penetration rate of CAVs. The eco-driving strategies, 
designed for an individual vehicle or a fleet of vehicles, 
may have a negative impact on the overall operational ef-
ficiency of the intersection in terms of travel delays and 
increased overall fuel consumption. For example, an Eco-
CACC algorithm-considering queue is developed, and the 
results show that for single-lane approaches, the algo-
rithm reduces the overall fuel consumption levels for all 
vehicles and that higher market penetration rates (MPRs) 

Driving 
Strategy Type

Fuel Consumption (g) Travel Time (s)

Urban Suburban Urban Suburban

Constant speed 419.68 572.88 290.00 304.88

Variable speed 378.27 551.09 335.69 489.24

Comparison –9.87% –3.80% 15.76% 60.47%

Table 3. The comparison of fuel consumption results between 
the variable speed driving strategy and constant speed driving 
strategy.
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FIG 12 The traveling trajectories of the variable speed and constant speed 
driving strategies with changed time duration of the red light in urban 
environments.
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FIG 13 The traveling trajectories of the variable speed and constant speed 
driving strategies with changed time duration of the red light in suburban 
environments.
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result in larger savings, whereas on multilane approaches, 
lower MPRs have negative impacts on the overall intersec-
tion fuel efficiency [18]. Thus, how to adapt the proposed 
strategies to real traffic conditions, particularly in a mixed 
traffic flow, is key to field implementation. Two aspects of 
future work are envisaged as follows: One is to examine 
how the key parameters of the proposed strategy, e.g., the 
minimum spacing between vehicles, speed limit, and the 
parameters of the car-following model will affect the traf-
fic flow as a whole. The other is the impact of the MPRs of 
CAVs deployed with eco-driving strategies. In addition, the 
vehicle fleets with an automated leader or with a human-
operated leader should also be analyzed.

Acknowledgments
This study is supported by the National Key R&D Program 
of China (2017YFB0102603). Special thanks should be giv-
en to Toyota for partially funding this study. Shengbo Eben 
Li and Qingfeng Lin contributed equally to this work. The 

corresponding authors of this article are Shengbo Eben Li 
and Qingfeng Lin.

About the Authors
Qingfeng Lin (linqf@buaa.edu.cn) 
earned his M.S. and Ph.D. degrees in 
vehicle operation engineering from Ji-
lin University, Changchun, China, in 
2003 and 2006. He is currently an as-
sistant professor with the School of 
Transportation Science and Engineer-

ing, Beihang University, China. During 2006–2008, he was 
a postdoctoral researcher at the Tsinghua University, Bei-
jing. His research work mainly focus on intelligent vehicle 
and driver behavior.

Shengbo Eben Li (lisb04@gmail.com) 
earned his M.S. and Ph.D. degrees 
from Tsinghua University, Beijing, in 
2006 and 2009. He is currently a ten-
ured associate professor at Tsinghua 
University. His active research inter-
ests include intelligent vehicles and 

driver assistance, reinforcement learning and distributed 
control, optimal control and estimation, and so forth. He is 
the author of more than 100 peer-reviewed journal/confer-
ence papers and the coinventor of more than 20 Chinese 
patents. He was the recipient of the Best Paper Award in the 
2014 IEEE ITS Symposium, the Best Paper Award in the 
14th ITS Asia Pacific Forum, the National Award for Tech-
nological Invention in China (2013), the Excellent Young 

0
1,

00
0

2,
00

0
3,

00
0

8,
00

0
5,

00
0

6,
00

0
7,

00
0

4,
00

0
0

5

10

15

20

30

25

Variable Speed Rule:

Constant Speed Rule:

Acceleration Constant Speed 
Deceleration

Only Constant Speed 

Distance (m)

S
pe

ed
 (

m
/s

)
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Driving 
Strategy Type

Fuel Consumption (g) Travel Time (s)

Urban Suburban Urban Suburban

Constant speed 415.93 573.15 290.00 298.88

Variable speed 373.76 544.25 332.06 465.25

Comparison –10.14% –5.04% 14.50% 55.67%

Table 4. The comparison of fuel consumption results with 
changed red light between the variable speed driving strategy 
and constant speed driving strategy.
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