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A B S T R A C T

Expert drivers have the ability to perform high side-slip angle maneuvers, like drifting, during racing to mini-
mize lap time or avoid obstacles. Designing planning and control algorithms for autonomous drift maneuvers,
however, is challenging because of the high lateral motion and nearly full saturation of rear tires. In this paper,
the authors propose a complete path planning and motion control framework to plan and track a reference drift
trajectory along a sharp bend in a track. The path planner divides the path horizon into three regions, finds a
path using different planning sub-modules, and then concatenates the solutions to generate the reference tra-
jectory. The controller then applies a mixed open-loop and closed-loop scheme to track the reference trajectory.
We validate the planning and control algorithms in simulation using a high-fidelity model in Simulink/Carsim,
and through experimentation using 1/10 scale Radio-Control (RC) vehicle.

1. Introduction

Drifting occurs when an expert driver intentionally maneuvers a
vehicle to cause loss of traction in the wheels, characterized by large
side-slip angles and near full saturation of the wheels. It is commonly
seen in rally racing when a driver quickly turns a corner.

Drifting represents a particularly interesting control maneuver be-
cause of the tire saturation and limited control authority in a highly
unstable region. Current chassis control systems, like anti-lock braking
system (ABS) and traction control system (TCS), try to prevent drifting
conditions from ever arising [1,2], but experimental evidence shows the
high-drift maneuvers may be more efficient from the minimum time
point of view or obstacle avoidance. In rally racing, expert drivers often
bring the vehicle into a drift state in order to reduce lap time or avoid
collisions, while still maintaining control of the vehicle. To better un-
derstand these dynamics, Velenis et al. analyzed the behavior of expert
drivers during drift and provided an empirical description of the se-
quence of steps the driver implements to initiate and control drift [3,4].

Most research on drift maneuvers fall into one of two categories:
sustained drift and transient drift. Sustained drift focuses on stabilizing
the vehicle about an unstable equilibrium state, resulting in a steady
state circular drift. Transient drift focuses on entering a drift state
temporarily to perform a maneuver, like drift parking.

For sustained drift, researchers have used vehicle models of varying
fidelity to study drift dynamics, ranging from a two-state bicycle model
[5,6] to a seven-state vehicle model [7,8]. Regardless of model fidelity,

the system model must accurately capture the tire forces that emerge
throughout drift, especially when the tires saturate. The Fiala tire
model [9] and the Pacejka tire model [7,10] have been used to capture
these forces. For the control design of sustained drift, the central feature
lies the coordination between steering and rear drive torque
[7,9,11,12]. Gonzales et al. designed a controller by linearizing the
vehicle model around one of its drift equilibria and then used a linear
quadratic regulator (LQR) feedback policy to compute the steering
angle and rear drive [12]. Hindiyeh et al. applied dynamic surface
control to balance the inputs and enabled ‘steering’ of rear tire through
novel usage of rear drive for lateral control [9]. Additionally, Hindiyeh
provided stability guarantees in the control design using Lyapunov-
based techniques. Outside of model-based optimal control, Cutler ap-
plied reinforcement learning with a motion capture system to achieve
sustained drift [13–15].

Work on transient drift has also emerged as a research topic for
vehicle applications [4,16–21]. Chakraborty et al. investigated methods
for mitigating unavoidable collisions using nonlinear optimization.
They found handbrake cornering drift to be optimal maneuver in some
situations [16,17]. A probabilistic control strategy called multi-model
LQR was applied by Kolter to slide a vehicle into a parking spot [18,19].
Velenis et al. reproduced in simulation a trail braking maneuver using
nonlinear optimization. The nonlinear program was formulated to
achieve maximum corner exit speed or minimal cornering time, using
vehicle model with suspension dynamics as constraints [4,20].

The common strategies to control transient drift maneuvers are
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based on nonlinear control methods that use a high dimensional vehicle
model. These models require numerous parameters, many of which are
difficult to estimate, as well as significant computational resources,
which makes them unsuitable for fast real-time implementation. In this
paper, the authors extend previous work [22] and present a framework
to plan and track a drift trajectory. Specially, the main contributions of
this paper are:

• A hybrid path planning algorithm to generate a reference trajectory
for drift. The planner divides the path horizon into three different
types of regions, finds a path for each region using different plan-
ning algorithms (Rapidly-exploring Random Trees, rule-based sam-
pling, Proportional Integral control) with different vehicle models,
and then concatenates the solutions of each to construct the re-
ference trajectory.

• A mixed open-loop and closed-loop control technique based on the
standard bicycle model with linear tire model to track the drift
trajectory, which is experimentally validated through a RC platform.

The remainder of this paper is organized as follows. Two kinds of
vehicle models and tire models are discussed and compared in
Section 2. Then, a hybrid rapidly-exploring random trees (RRT) and
rule-based path planning algorithm is presented in Section 3. Section 4
summarizes mixed open-loop and closed-loop control strategy. Simu-
lation and experimental results are presented in Section 5. Concluding
remarks are given in Section 6.

2. System model

This section discusses vehicle models for the path planner and
controller. Ideally, a single model would be used through the entire
architecture, but conventional models, like the four-wheel model, begin
to break down as the vehicle enters a drift state. The following sub-
sections describe the low and high fidelity vehicle models that are used
in the path planner and controller.

2.1. Four-wheel vehicle model

We use a planar four-wheel vehicle model from Falcone [23] to
capture the vehicle dynamics, which models the vehicle as a single rigid
body with forces acting at each of the wheels. The tire forces are
modeled using the Pacejka tire model, which is a semi-empirical model
similar in mathematical structure to physics-based models, which is a
semi-empirical model based on fitting a curve to experimental data. The
four-wheel vehicle model and Pacejka tire model describe the planar
motion of the vehicle at the center of mass. The vehicle state and input
are =z U U r X Y ψ ω ω ω ω[ , , , , , , , , , ,]x y FL FR RL RR and =u δ F F[ , , ],x

RL
x
RR

respectively. Ux, Uy and r are the vehicle’s longitudinal speed, lateral

speed and yaw rate in the body-fixed frame, and X, Y, ψ describe the
position and yaw angle of the vehicle in earth-fixed frame. The four
variables ωij are the wheel angular speed in tire-fixed frame, where the
first subscript i∈ {F, R} indicates either the front or rear axle, and the
second subscript j∈ {L, R} indicates either the right or left side. δ and Fx
are the steering angle and rear drive force, respectively. For sake of
brevity, we do not present the full set of equations from the models, but
instead discuss only modifications to the model that take weight
transfer into account.

Weight transfer means that the normal force of each tire (i.e. force
in the vertical direction Fz

i j, ) can change over time, especially when the
yaw rate and acceleration are large. By assuming the vertical accel-
eration is zero and all rotations occur about the center of mass, we
apply the following force constraints

+ + + =F F F F mgz
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For each force acting on the wheel, we use the notation (·) ,k
i j, where i, j

indicates the wheel, and k∈ {x, y, z} indicates the directional compo-
nent of the force in the body frame of the vehicle. The −x z and −y z
planes of vehicle are shown in the Fig. 1. We also apply balance of
angular momentum equations about the center of mass
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where m is the mass of the vehicle, g is the acceleration due to gravity,
a, b are the distances from the center of gravity (CoG) to the front and
rear axles, respectively. c is the distance from vehicle longitudinal axis
to the wheels and h is the distance from the CoG to the ground.

The dynamics of the system are compactly expressed as

=z t f z t u t˙ ( ) ( ( ), ( )).w4 (5)

where the superscript 4w indicates the four-wheel model.

2.2. Model accuracy

The four-wheel model from the previous section accurately de-
scribes the motion of the vehicle under typical driving conditions (i.e.
non-extreme maneuvers), when the slip angle is small. This model be-
gins to break down, however, once the slip angle grows to large values.
To illustrate this, we compare the output of the four-wheel model and a
high-fidelity vehicle model from CarSim. Both models use the same
system parameters and the same input sequence that cause a large slip
angle to emerge. The resulting trajectories are shown in Fig. 2a.

From the resulting trajectories, we observe that the four-wheel
model and the CarSim model are nearly identical as the vehicle drives

Fig. 1. x-z plane and y-z plane of the vehicle.
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straight, but then as the vehicle makes the turn and the tires begin to
saturate, the trajectories begin to diverge significantly. This result in-
dicates that the four-wheel model cannot accurately capture the dy-
namics of high side slip maneuvers. This motivates the use of two
models: a conventional low order model for non-extreme maneuvers
(i.e. low side-slip angle), and a high fidelity one for extreme maneuvers.

2.3. Bicycle model

For low side-slip angle maneuvers, we use the bicycle model, which
simplifies the four-wheel model by lumping the front two tires together
and the rear two tires together. This is because the bicycle model can
capture the model features in low side-slip region. We compare the
output of the two-wheel model and the Carsim model using the same
system parameters and input sequence. The resulting trajectories in
Fig. 2b are similar. This model selection reduces system complexity and
eases parts of the design for the path planner and controller. The state
and input vectors for the bicycle model are =z U U r X Y ψ[ , , , , , ]x y and

=u δ F[ , ],x
R respectively. The equations of motion are
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= −X U ψ U ψ˙ cos sinx y (9)

= +Y U ψ U ψ˙ sin cosx y (10)

=ψ r˙ (11)

For small slip angles, the tire forces operate in the linear region,
modeled as

=F C sy
F

s
F F

(12)

=F C sy
R

s
R R

(13)

where Cs
i is the cornering stiffness ( =i F R, ). sF and sR are side-slip

angles of front and rear wheels, which are given by
= − +s δ U ar U( )/F

y x and = −s br U U( )/R
y x. The vehicle dynamics are

compactly expressed as

=z t f z t u t˙ ( ) ( ( ), ( ))w2 (14)

3. Path planning

Drift path planning is a difficult problem to solve due to the non-
linear nature of the system dynamics and the complexity of existing
solution methods. We can significantly simplify the problem com-
plexity, however, by partitioning the track into regions based on the
type of maneuver the driver executes, and then solve a smaller path
planning problem for each partition. Additionally, for the partition in
which the driver initiates drift, we note that drift maneuvers often re-
sult from a simple combination of control inputs. With this observation
in mind, we devise a path planning method to find a feasible drift
trajectory.

For the race track segment in Fig. 3, the plan planner module aims
to generate a sequence of states and inputs, referred as the reference
trajectory, such that vehicle remains within the track boundaries and
also drifts around the corner. The path planner divides the path horizon
into three types of regions and solves smaller planning sub-problems.
The planner then concatenates the solution path from each sub-problem
to construct the reference trajectory. The region types are the ‘free’
(white) R ,free ‘drift’ (purple) R ,drift and ‘transit’ region (green) Rtransit.

In the free region, the planner applies an RRT algorithm [24] using
a bicycle model to find a path. In the drift region, the planner applies a
rule-based method with a high-fidelity vehicle model to search for a
path. The transit region connects the two regions using a Proportional
Integral (PI) controller. We designate track segments with a corner
(purple) as drift regions since rally racers typically drift along the those
corners. The segments before cornering are defined as free region. The
transit region is defined to connect free region and drift region.

3.1. Free region

For low side-slip segments of the track in Fig. 3, the path planner
uses a modified RRT in Table 1 to find a feasible trajectory. At each
iteration, the RRT algorithm first generates a sample position, and then
finds the nearest node znear within the tree in terms of Euclidean dis-
tance. Next, the RRT algorithm samples a random input u and then
propagates the dynamics forward one-time step, using the bicycle
model, starting at znear and resulting in node znew. The sampled input
accounts for input rate constraints by constraining the sampling domain
to be around the previously applied input, which limits the input
magnitude and ensures a smooth path. After propagating the node
forward, the algorithm ensures the vehicle remains within the track
boundary, and also checks for violations of low slip-angle assumptions.
We assume no obstacles inside the track. As the bicycle model only
holds in low side-slip angle conditions, the lateral acceleration of the
new node znew must satisfy the following conditions before it is added to

Fig. 2. (a) The four-wheel model accurately tracks the CarSim output for low-side slip motion, but then diverges for large slip angle motion (b) The two-wheel model
accurately tracks the CarSim output for low-side slip motion.
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the tree.
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where ay
max is maximum available lateral acceleration, Rs is the vehicle’s

turning radius, and μ is the tire-road friction coefficient. The algorithm
terminates once a state is produced that is inside the transit region.

3.2. Transit region

In the transit region, the path planner applies two PI controllers to
connect the final state of the free region and the initial state of the drift
region. Both controller activate once the vehicle enters the transit re-
gion. The steering PI controller reduces the error between current yaw
angle and initial yaw angle in the drift region. The rear-drive torque PI
controller reduces the error between the current longitudinal speed and
the initial one at the start of the drift region. The gains of controllers are
tuned to guarantee fast converge and small overshoot. The planner in
the transit region also uses a high fidelity vehicle model.

3.3. Drift region

Next comes the drift region. As mentioned above, drift maneuvers
result from simple combinations of control inputs, which can be easily
parameterized. The key idea of drift maneuvers is to saturate the rear
tires through either a forward torque or a braking torque. Intuitively,
tire saturation from a large rear longitudinal force reduces the max-
imum available lateral force that friction can provide, allowing the
vehicle to easily enter a drift state. The drift maneuver is described by
three basic phases:

Turn-in phase: The driver turns in the corner and simultaneously
applies a large positive rear-drive torque. The vehicle rotates about its
vertical axis and starts to slide.

Counter-steering phase: The driver counter steers and simulta-
neously decreases the rear-drive torque, which is necessary to prevent
the vehicle from spinning out.

Exit phase: The driver stabilizes the vehicle, reducing the side-slip
angle and de-saturating tire forces.

We use a rule-based algorithm to obtain an input sequence for
steering and torque that causes the vehicle to enter drift. Each input
sequence is a piece-wise constant function characterized by a set of
parameters for time and magnitude. The vehicle model inside the al-
gorithm is a high-fidelity Carsim model for simulation and a 1/10-scale
RC car for experimentation. The shape of each input sequence is shown
in Fig. 4. The parameters are tturn, δturn, Fturn for the time duration,

Fig. 3. The path planner divides the path horizon into three types of regions : free (white), drift (purple), transit (green). The path planning algorithm returns the blue
trajectory. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Pseudocode of the modified RRT planning.

Input:
Initial vehicle state zini, maximum number of nodes in the tree K, admissible inputs
setU , vehicle model =z t f z t u t˙ ( ) ( ( ), ( )),w2 incremental time Δt
Output: RRT graph G

1: G.initialize(zini)
2: for =i 1 to K
3: Xrand, Yrand← GetRandomSample()
4: znear← FindNearestNode(Xrand, Yrand, G)
5: u← GetRandomInput(U )
6: znew← Forward-model(znear, u, f2w)
7: if IsCollisionFree(znew) and IsLatAccValid(znew)
8: G.add_node(znew)
9: G.add_edge(znear→ znew, u)
10: if znew∈ Rtransit
11: Exit SUCCESS
12: end if
13: if = =i K
14: Exit FAILURE
15: end if
16: end if
17: end for
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steering angle, and rear force of the turn-in phase, respectively; tcounter,
δcounter, Fcounter for the time duration, steering angle, and rear force of
counter-steering phase, respectively.

The proposed rule-based algorithm is outlined in Table 2. The
sample space for each parameter is obtained from observing expert
drivers (e.g. at which moment they counter steer, engage the gas, etc.).
The demonstration allows us to construct sample space that are more
likely to produce a feasible drift trajectory. Inside the algorithm, the
planner first uniformly samples each parameter in sample space to
generate an input sequence ̂u . Next, we run an experiment with either a
high fidelity vehicle model or an actual vehicle, using the sampled input
sequence. The algorithm terminates if the trajectory stays within the
track, and also if the final yaw angle is near a target yaw angle ψtarget
within some tolerance eψ. The target angle ψtarget is tangent center line
path at the end of the drift region.

4. Control law

The proposed controller attempts to track the reference drift tra-
jectory from Section 3 by using a mixed open-loop and closed-loop
scheme. As mentioned earlier, it is difficult to track transient drift using
a model-based controller due to the complex dynamics that arises from
tire saturation and high side-slip angles. Over a short period of time,
however, it is observed that a fixed open-loop input sequence produces
a repeatable response [18]. With this observation in mind, we design a

mixed open-loop and closed-loop controller. In general, the controller
switches from closed-loop to open-loop when the closed-loop controller
does not track the reference trajectory well.

The closed-loop part of mixed controller is based on LQR approach.
We compute a sequence of LQR feedback control policies for each state
and input pair from the reference trajectory zref and reference input uref

in Section 3.
First, we analytically linearize the vehicle model f2w with matrices

=A f zd /dw2 and =B f ud /dw2 . Next, we numerically evaluate the ma-
trices A and B at each reference state and input pair (zref(i), uref(i)),
where i indexes a single state/input pair.

= =
=

=

=

=

A i
f
z

B i
f
u

( )
d
d

( )
d
d

w

z z i

u u i

w

z z i

u u i

2

( )

( )

2

( )

( )

ref

ref

ref

ref (18)

For each reference pair, the error dynamics of the system ferrare given
by

= +z i A i z i B i u iΔ ˙ ( ) ( )Δ ( ) ( )Δ ( ) (19)

where = −z i z z iΔ ( ) ( )ref and = −u i u u iΔ ( ) ( )ref .
Then we compute the closed-loop control policy based on an LQR

with the following quadratic cost function:

∫= +
=

∞
J z Q z u R u dt(Δ Δ Δ Δ )

t
T T

0 (20)

where = >Q Q 0,T = >R R 0T . The control input Δu that minimizes the
cost function is given by

= − = −−u R B P z K zΔ Δ ΔT1 LQR (21)

where = >P P 0,T which can be obtained by solving algebraic Riccati
equation. The closed-loop control policy is given by equation (22). For
each reference state and input pair, we now have a feedback matrix
KLQR(i).

= +u i u i u i( ) ( ) Δ ( )cl ref (22)

4.1. Online control design

The online controller performs two actions: (a) search for the
nearest reference trajectory point, and (b) apply either an open-loop
(the reference input)or closed-loop input command. The structure is
shown in Fig. 5.

First, at each time step, we find the nearest reference position (Xref,
Yref, ψref) by performing the optimization routine below

Fig. 4. The input profiles for the steering and rear tire force during drift cornering are often simple combinations of step functions that can be easily parameterized.

Table 2
Pseudocode of the proposed rule-based planning.

Input: Initial vehicle states ̂z ,ini maximum number of iteration K , sample space,
vehicle model (Carsim model for simulation, RC car for experimentation)
Output: The values of tturn, δturn, Fturn, tcounter, δcounter, Fcounter

1: for =i 1 to K
2: ←̂u GenerateInputSequence()
3: ̂ ̂→ ←z z( )ini end ConductExperiment( ̂̂z u,ini )
4: if IsCollisionFree ̂ ̂→z z( )ini end
5: if − <ψ ψ eψend target

6: save ̂u as udrift

7: Exit SUCCESS
8: end if

9: if = =i K
10: Exit FAILURE
11: end if
12: end if
13: end for
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where (Xt, Yt, ψt) is the current position estimate and (ωX, ωY, ωψ) is a
set of weight parameters.

Next the online controller applies either a closed-loop or open-loop
input. To decide among the two, we propagate the vehicle model f2w

forward in time for n steps starting from current state zt. The controller
propagates the dynamic twice, once using the open-loop inputs and
once using the closed-loop policy, as shown below

̂ ̂ ̂+ = +z i z i T f z i u i( 1) ( ) ( ( ), ( ))s
wmode mode 2 mode mode (24a)

̂
= ⎧
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+ + + − +
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u i k K i k z i z i k
u i k

( )
( ) ( )( ( ) ( )) : CL
( ) : OL
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ref LQR cl ref

ref

(24b)

̂ =z z(0) tmode (24c)

where =mode {ol, cl}. ̂z i( )mode is the predicted states by applying
closed-loop or open-loop control. The predicted time horizon is 2 s. The
controller selects the control command uout that results in a smaller
cumulative tracking error, which is expressed as below

̂ ̂∑= − + − +
=

=

J z i z i k Q z i z i k( ( ) ( )) ( ( ) ( ))
i

i n
Tmode

0

mode ref mode ref

(25)

The underlying motivation of the proposed method is that over a
short period of time, a fixed open-loop input sequence produces a re-
peatable response, even for complex maneuvers like transient drift. In
general, the controller selects closed-loop command in well-modeled
regions and selects open-loop maneuvers in poorly-modeled region (i.e.
drifting).

5. Results and discussion

5.1. Simulation result

We first validated the proposed planning and control strategy in
simulation using CarSim. We selected an A-class rear-drive vehicle as
the plant since the software suite does not provide any vehicle models
at the scale of an RC car. The parameters of the vehicle and tires while
stationary are summarized in Table 3.

The simulation results of the proposed algorithm are shown in
Fig. 6, using a 2 degree offset for steering angle as a measure of model
mismatch. In Fig. 6, the black dash line represents the track boundary,
the blue path represents the reference trajectory, and the red path
outlines the trajectory using the proposed control algorithm. The green
line and cyan line show the path under pure open-loop and pure closed-
loop command with a steering angle offset. The simulation results
suggest that the vehicle cannot track the designed trajectory closely by

following the open-loop command because of model mismatch. By
following only closed-loop commands, the vehicle closely tracks the
reference trajectory in the low side-slip region, since the vehicle dy-
namics are well-modeled, but begins to diverge from the reference
trajectory in the drift region where the tire forces saturate. The pro-
posed strategy tracks the reference trajectory more closely than either
method because of the switching policy. When the tracking error of
predicted states under closed-loop control is high, the controller no
longer relies on the LQR policy and instead applies open-loop inputs.

5.2. Experimental result

The authors used a 1/10 scale rear-drive RC vehicle platform, which
is a low-cost development platform for autonomous driving to achieve
complex maneuvers such as drifting and lane changing1. The model
identification and state estimation methods are based on previous work
from [12]. The parameters of RC car and tires are summarized in Table 3.
After obtaining the reference trajectory as shown in Section 3, we ran
two sets of experiments, one using the proposed control algorithm, the
other using pure open-loop control command. The blue path in Fig. 7
denotes the reference trajectories, and the green and red paths denote the
experimental results using open-loop control and proposed control
method, respectively. The snapshot of experiment is shown in Fig. 8. The
experimental results are consistent with those of the simulations. For
experimentation, the performance of pure open-loop control is poor even
in the straight segments due to disturbances in the environment. The
proposed mixed open-loop and closed-loop strategy tracks the reference
path more closely than either pure open-loop or pure-closed loop stra-
tegies. The vehicle follows the reference trajectory well in the straight
segment. As the vehicle drifts around the corner, the difference between
actual trajectory and reference trajectory gets larger. Because the open-
loop control is applied in the cornering segment. Then the vehicle re-
covers to the reference path again in the second straight segment as the
LQR is applied. We tested the repeatability of the proposed control al-
gorithm by tracking the same reference trajectory multiple times. The
experimental result shows that the proposed control algorithm is ap-
plicable in practice by using only low-cost sensors. The limitation of
proposed method is that the duration of the drifting must be short,
otherwise, the vehicle cannot recover from the drifting reference errors
in well-modeled region after exiting the drift region.

Fig. 5. The online mixed control scheme evaluates both open-loop and close-loop polices and then selects the optimal one according to the cost function in the switch
policy block.

Table 3
Vehicle parameters.

Parameter Carsim RC-car Parameter Carsim RC-car

m [kg] 1830 1.95 b [m] 1.65 0.125
Iz [kg·m2] 3287 0.24 Cs

F [N/rad] 36000 1.76

a [m] 1.4 0.125 Cs
R [N/rad] 36000 1.76

1 More information at the project site barc-project.com.

F. Zhang et al. Mechatronics 54 (2018) 167–174

172



6. Conclusion

In this paper, the authors propose a path planning strategy and
control scheme to plan and track a reference drift trajectory along a
sharp bend in a track. The path planner combines the RRT method and
a rule-based method to plan a trajectory for both low side-slip and high
side-slip motion. The controller then applies a mixed open-loop and
closed-loop scheme with three-state vehicle model to track the

reference trajectory. We validate the proposed planning and control
algorithms in simulation using a high-fidelity model in Simulink/
Carsim, and through experimentation using a 1/10 scale RC vehicle.
The proposed path planner and controller constitute a complete fra-
mework to control a vehicle to track a reference drift trajectory. Future
work includes achieving better drift performance, like reducing tap
time or extending the drifting duration.

Fig. 6. The plot above illustrates the
tracking performance in simulation of
the proprosed algorithm (red), against
a pure open-loop strategy (green) and
pure closed-loop strategy (light blue).
The proposed algorithm most closely
tracks the reference trajectory (blue).
(For interpretation of the references to
colour in this figure legend, the reader
is referred to the web version of this
article.)

Fig. 7. The plot above illustrates the
tracking performance from experi-
mentation of the proprosed algorithm
(red), against a pure open-loop strategy
(green). The proposed algorithm most
closely tracks the reference trajectory
(blue). (For interpretation of the refer-
ences to colour in this figure legend,
the reader is referred to the web ver-
sion of this article.)

Fig. 8. The sequences of snap shots illustrate that the RC successfully tracks the drift cornering trajectory.

F. Zhang et al. Mechatronics 54 (2018) 167–174

173



Acknowledgements

This study is partially supported by NSF China with 51575293 and
51622504, National Key R&D Program in China with
2016YFB0100906, and International Sci&Tech Cooperation Program of
China under 2016YFE0102200.

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.mechatronics.2018.05.009.

References

[1] Osborn RP, Shim T. Independent control of all-wheel-drive torque distribution.
Vehic Syst Dyn 2006;44(7):529–46.

[2] Yamakawa J, Kojima A, Watanabe K. A method of torque control for independent
wheel drive vehicles on rough terrain. J Terramech 2007;44(5):371–81.

[3] Velenis E, Tsiotras P, Lu J. Modeling aggressive maneuvers on loose surfaces: the
cases of trail-braking and pendulum-turn. Control conference (ECC), 2007
European. IEEE; 2007. p. 1233–40.

[4] Velenis E, Tsiotras P. Optimal velocity profile generation for given acceleration
limits: The half-car model case,ǥ. 2005 IEEE international symposium on industrial
electronics. 2005. p. 355–60.

[5] Ono E, Hosoe S, Tuan HD, Doi S. Bifurcation in vehicle dynamics and robust front
wheel steering control. IEEE Trans Control Syst Technol 1998;6(3):412–20.

[6] Voser C, Hindiyeh RY, Gerdes JC. Analysis and control of high sideslip manoeuvres.
Vehic Syst Dyn 2010;48(S1):317–36.

[7] Velenis E, Frazzoli E, Tsiotras P. On steady-state cornering equilibria for wheeled
vehicles with drift. Decision and control, 2009 held jointly with the 2009 28th
Chinese control conference. CDC/CCC 2009. Proceedings of the 48th IEEE con-
ference on. IEEE; 2009. p. 3545–50.

[8] Velenis E, Katzourakis D, Frazzoli E, Tsiotras P, Happee R. Steady-state drifting
stabilization of rwd vehicles. Control Eng Pract 2011;19(11):1363–76.

[9] Hindiyeh RY, Gerdes JC. Design of a dynamic surface controller for vehicle sideslip
angle during autonomous drifting. IFAC Proc Vol 2010;43(7):560–5.

[10] Velenis E, Frazzoli E, Tsiotras P. Steady-state cornering equilibria and stabilisation
for a vehicle during extreme operating conditions. Int J Veh Autonom Syst
2010;8(2-4):217–41.

[11] Hindiyeh RY, Gerdes JC. A controller framework for autonomous drifting: Design,
stability, and experimental validation. J Dyn Syst Measure Control
2014;136(5):051015.

[12] Gonzales J, Zhang F, Li K, Borrelli F. Autonomous drifting using onboard sensors.
13th international symposium on advanced vehicle control. AVEC; 2016.

[13] Cutler M, Walsh TJ, How JP. Reinforcement learning with multi-fidelity simulators.
2014 IEEE international conference on robotics and automation (ICRA). IEEE; 2014.
p. 3888–95.

[14] Cutler M, Walsh TJ, How JP. Real-world reinforcement learning via multifidelity
simulators. IEEE Trans Robot 2015;31(3):655–71.

[15] Cutler M, How JP. Autonomous drifting using simulation-aided reinforcement
learning. 2016 IEEE international conference on robotics and automation (ICRA).
IEEE; 2016. p. 5442–8.

[16] Chakraborty I, Tsiotras P, Lu J. Vehicle posture control through aggressive man-
euvering for mitigation of t-bone collisions. 2011 50th IEEE conference on decision
and control and European control conference. IEEE; 2011. p. 3264–9.

[17] Chakraborty I, Tsiotras P, Diaz RS. Time-optimal vehicle posture control to mitigate
unavoidable collisions using conventional control inputs. 2013 American control
conference. IEEE; 2013. p. 2165–70.

[18] Kolter JZ, Plagemann C, Jackson DT, Ng AY, Thrun S. A probabilistic approach to
mixed open-loop and closed-loop control, with application to extreme autonomous
driving. Robotics and automation (ICRA), 2010 IEEE international conference on.
IEEE; 2010. p. 839–45.

[19] Kolter JZ. Learning and control with inaccurate models. Stanford University; 2010.
Ph.D. thesis.

[20] Velenis E, Tsiotras P. Minimum time vs maximum exit velocity path optimization
during cornering. 2005 IEEE international symposium on industrial electronics.
2005. p. 355–60.

[21] Velenis E, Tsiotras P, Lu J. Optimality properties and driver input parameterization
for trail-braking cornering. Eur J Control 2008;14(4):308–20.

[22] Zhang F, Gonzales J, Li K, Borrelli F. Autonomous drift cornering with mixed open-
loop and closed-loop control. IFAC Proc Vol 2017.

[23] Falcone P, Eric Tseng H, Borrelli F, Asgari J, Hrovat D. Mpc-based yaw and lateral
stabilisation via active front steering and braking. Vehic Syst Dyn
2008;46(S1):611–28.

[24] LaValle SM. Rapidly-exploring random trees: a new tool for path planning. Tech rep
98-11. Computer Science Department, Iowa State University, 1998; 1998.

F. Zhang et al. Mechatronics 54 (2018) 167–174

174

https://doi.org/10.1016/j.mechatronics.2018.05.009
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0001
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0001
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0002
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0002
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0003
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0003
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0003
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0004
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0004
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0004
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0005
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0005
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0006
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0006
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0007
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0007
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0007
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0007
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0008
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0008
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0009
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0009
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0010
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0010
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0010
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0011
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0011
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0011
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0012
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0012
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0013
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0013
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0013
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0014
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0014
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0015
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0015
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0015
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0016
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0016
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0016
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0017
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0017
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0017
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0018
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0018
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0018
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0018
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0019
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0019
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0020
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0020
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0020
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0021
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0021
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0022
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0022
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0023
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0023
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0023
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0024
http://refhub.elsevier.com/S0957-4158(18)30077-1/sbref0024

	Drift control for cornering maneuver of autonomous vehicles
	Introduction
	System model
	Four-wheel vehicle model
	Model accuracy
	Bicycle model

	Path planning
	Free region
	Transit region
	Drift region

	Control law
	Online control design

	Results and discussion
	Simulation result
	Experimental result

	Conclusion
	Acknowledgements
	Supplementary material
	References




